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“To call in the statistician after the experiment is done may be
no more than asking him to perform a postmortem examination:

he may be able to say what the experiment died of.”

Sir Ronald Fisher, Indian Statistical Congress, Sankhya, around 1938
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Statisticians are the bad fairies of research.
People forget to invite them until it's too late, at
which point they send everyone to sleep.
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Different types ot experiments

Learning experiment questions

Confirming experiment questions

* Does the drug have toxic side effects (at what
dose, given for how long, in which tissue)?

e Does stress affect rodent behaviour (what
kind of stress, for how long, on what be-
havioural tasks)?

* How dose exercise affect cognitive function-
ing of older people (what type of exercise, how
much, which aspect of cognition)?

4 Increased creatinine indicates kidney damage.

* Does 5mg/kg of the drug given once a day
for 5 days increase blood creatinine# concen-
tration?

e Does fox urine odour (a stressor) affect the

amount of food Wistar rats consume during
the first 24 hours after exposure?

* Does 30 min of aerobic activity (treadmill
running) at 60% VO max?, 3 days a week
for 6 weeks, in males between 55-70 years of
age, improve performance on a mental rota-
tion task?

b VO, max is the maximal oxygen uptake and is a measure of a person’s aerobic fitness.

[Lazic, 2016]



What is experimental design?

The organization of an experiment, to ensure that the right type of data, and
enough of it, is available to answer the questions of interest as clearly and

efticiently as possible.

http://www.stats.gla.ac.uk/steps/glossary/anova.html#expdes



http://www.stats.gla.ac.uk/steps/glossary/anova.html#expdes

What affects the outcome of an experiment?

Outcome = Treatment etffects + Biological effects + Technical eftects + Error
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[Lazic, 2016]



What is bad experimental design?
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What can happen with bad experimental design?

e Example: gene expression study comparing 60 CEU and 82 ASN HapMap

individuals

e 26% of the genes were found to be significantly differentially expressed

(78% with less restrictive multiple testing correction)

o But: all CEU samples were processed (sometimes years) before all the ASN

samples!

Akey et al., Nature Genetics 2007; Spielman et al., Nature Genetics 2007
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What can happen with bad experimental design?

a Comparing CEU and ASN b Comparing processing times
10
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Akey et al., Nature Genetics 2007; Spielman et al., Nature Genetics 2007



What would be a better experimental design?

e Process all samples at the same time/in one batch (not always feasible)

* Minimize confounding as much as possible through
* blocking

e randomization

e Batch effects may still be present, but with an appropriate design we can

account for them



Gene expression
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Dealing with batch effects

* |n statistical modeling, batch effects can be included as covariates

(additional predictors) in the model.

« For exploratory analysis, we often attempt to “eliminate” or “adjust for”
such unwanted variation in advance, by subtracting the estimated effect

from each variable (e.g. the expression of a gene).

e Even partial confounding between batch and signal of interest can lead to

poroblems.

Nygaard et al., Biostatistics 2016
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"Batch effect correction” won't work here

p-values trom test comparing CEU and ASN, after controlling for the
processing year

00 02 04 06 08 1.0

P values

0% differentially expressed

Akey et al., Nature Genetics 2007



Accounting for batch eftects in practice

Public, processed RNA-seq data from 3 tissues, 4 studies show strong
"study” (=batch) signal
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Accounting for batch eftects in practice

Accounting for the batch effect brings out the signal of interest
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Batch effect adjustment vs normalization

Batch effect adjustment goes beyond the “global” between-sample
normalization methods
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Batch effect adjustment vs normalization

Batch effect adjustment goes beyond the “global” between-sample
normalization methods
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Other design issues: replication

e Replicates are necessary to estimate within-condition variability.

* Variability estimates are, in turn, vital for statistical testing.

Gene expression
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e Replicates are necessary to estimate within-condition variability.
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Different types of units

« Biological units (BU) - entities we want to make inferences about (e.g.,

animal, person)

e Experimental units (EU) - smallest entities that can be independently

assigned to a treatment (e.qg., animal, litter, cage, well)

e Observational units (OU) - entities at which measurements are made

[Lazic, 2016]



Biological vs experimental units
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Pseudoreplication

 “Artificial inflation of the sample size, that usually occurs when the
biological unit of interest differs from the experimental unit or

observational unit.”

e Only replication of experimental units is true replication

[Lazic, 2016]



What is a p-value?

* The p-value is the probability of obtaining a test statistic at least as extreme

as the one observed, if the null hypothesis is true (i.e., it there is no true
signal in the data)

e Hence, if we get a p-value of 0.05, it means that there is a 5% chance of
getting that extreme results even in the absence of real signal



What does this mean tor high-throughput studies?

Assume that we perform 10,000 tests (one for each gene)...
... and that there is no true signal at all in the data
Then we would expect to get around 500 p-values below 0.05

Relying solely on p-values would be misleading!



NEUROSCIENCE PRIZE: Craig Bennett, Abigail Baird, Michael Miller, and George Wolford [USA], for
demonstrating that brain researchers, by using complicated instruments and simple statistics, can see
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meaningful brain activity anywhere — even in a dead salmon.
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METHODS

Subject. One mature Atlantic Salmon (Salmo salar) participated in the fMRI study.
The salmon was approximately 18 inches long, weighed 3.8 Ibs, and was not alive at
the time of scanning.

Task. The task administered to the salmon involved completing an open-ended
mentalizing task. The salmon was shown a series of photographs depicting human
individuals in social situations with a specified emotional valence. The salmon was
asked to determine what emotion the individual in the photo must have been
experiencing.

Design. Stimuli were presented in a block design with each photo presented for 10
Craig M. Bennett, Abigail A. Baird, Michael B. Miller, seconds followed by 12 seconds of rest. A total of 15 photos were displayed. Total

and George L.Wolford, Journal of Serendipitous : :
and Unexpected Results, vol. |, no. |, 2010, pp. 1-5 scan time was 5.5 minutes.



We need to change perspective

 Instead of limiting the false positive probability for each individual test, try
to limit

e the probability of obtaining any talse positives (FWER)

 the fraction of false positives among the significant genes (FDR)



Benjamini-Hochberg correction - controlling the FDR

e Assume we are performing N tests

e |ntuition:

e for each threshold a, we can estimate the expected number of false
discoveries by aN

e Compare this to the actual number of discoveries at that threshold (Ng)

e Choose asothat aN/Ng4 < 0.05 (or another desired threshold)



Interpreting the FDR

 The FDR is a measure for a set of genes

* |In a set of genes with FDR = 0.05, approximately 5% can be expected to be
false discoveries

 However, we don't know which ones! It could be the most significant!

- g-values are gene-wise signiticance measures (“adjusted p-values”) - the
smallest FDR we have to accept in order to call the gene signiticant



Model formulas and design matrices

Testing is done separately for each gene
We must tell the packages which model to fit (e.g. which predictors to use)

The design does not follow “automatically” from having the sample annotation
table - many different designs are often possible

Model formulas in R:
response variable ~ predictors

Fit a separate model for each gene - response variable changes. Specify only
oredictors



Examples

## Linear model, mtcars data
Im(mpg ~ cyl, data = mtcars)

## Linear model (limma), gene expression data
IlmFit(object = y, design = model.matrix(~ group))

## GLM (edgeR), RNA-seq data
fit <- glmFit(y = d, design = model.matrix(~ time))

## DESegl2, RNA-seq data

dds <- DESegDataSetFromMatrix(countData = countData,
colData = DataFrame(condition),
design = ~ condition)



Testing and contrasts

« After fitting the model(s), we must decide which coefticient (or combination
thereof) we want to apply a hypothesis test for.

e Combinations of coefficients are called contrasts.

e Design matrices can often be defined in many equivalent ways - important
that the contrast is defined accordingly!



Examples

## GLM (edgeR), RNA-seq data

gLmLRT(f1t, coef = 2)
glmLRT(f1t, contrast

## DESeqglZ, RNA-seqg data

results(dds, contrast

results(dds, contrast
results(dds)

C(_la 1))

c("condition”, "B", "A"))
c(@, -1, 1))



Model formulas and design matrices

» Aldesign matrix|contains the values of the predictor variables for each

sample
coefficients

U1 1 0 / €1

Y2 1 0 E9

Y3 ]. O /BO €3 _

Y4 11 ( 51 ) E4

Ys 1 1 E5

Y6 1 1 6

\ Yi = Po + Prx; + &

e.g.: (log) expression values for a given gene



Many ways of modeling the same expected values

e 1 predictor, 2 groups e 2 predictors, 2*2 groups
Y
group 1 group 2
b0 bO+b1
x ~X*Y
b0 b0 + b1 ~X b0+b1+ ~X+Y + XY
b0+b2 b2+b3
Y New variable,
combining X
group 1 group 2 b0 bt / and Y
X ~0 + XY
b2 b3
b0 b1 ~0 + X
Y
b0  bO+b1
o , X ~X + X:Y
the coefficients mean different b0+b2+
b0+b2 b3

things in the different cases!



Model tormulas and design matrices - example 1
One predictor, two levels (without intercept)

Sample table: Design matrix:

sample treatment treatmentcontrol treatmenttreated
1 sl control 1 1 0
2 s2 control 2 1 0
3 s3 control 3 1 0
4 s4d treated 4 0 1
5 s5 treated 5 0 1
6 S6 treated 6 0 1
Formula: Modeled values:

control treated

~ (0 4+ treatment

treatmentcontrol treatmenttreated
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Model tormulas and design matrices - example 1
One predictor, two levels (with intercept)

Sample table: Design matrix:
sample treatment (Intercept) treatmenttreated
1 sl control 1 1 0
2 S2 control 2 1 0
3 s3 control 3 1 0
4 s4 treated 4 1 1
5 s5 treated 5 1 1
6 S6 treated 6 1 1
Formula: Modeled values:
control treated
~ treatment
1 * Intercept + 1 * Intercept +

0 * treatmenttreated | 1 * treatmenttreated
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Model tormulas and design matrices - example 1
One predictor, two levels (with intercept)

Sample table: Design matrix:
sample treatment (Intercept) treatmenttreated
1 sl control 1 1
2 S2 control 2 1
3 s3 control 3 1

s4 treated

D

1
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= = |krlo o o

5 s5 treated 5 1
6 S6 treated 6 1
Formula: Modeled values:
control treated
~ treatment
1 * Intercept + 1 * Intercept +

0 * treatmenttreated | 1 * treatmenttreated




Model tormulas and design matrices - example 1
One predictor, two levels (with intercept)

Sample table: Design matrix:
sample treatment (Intercept) treatmenttreated
1 sl control 1 1 0
2 S 2 control 2 1 0
3 s 3 control 3 1 0
4 s4 treated 4 1 1
6 S6 treated 6 1 1
Formula: Modeled values:
control treated
~ treatment
1 * Intercept + 1 * Intercept +

0 * treatmenttreated | 1 * treatmenttreated




Model tormulas and design matrices - example 1
One predictor, two levels (with intercept)

Sample table: Design matrix:
sample treatment (Intercept) treatmenttreated
1 sl control 1 1 0
2 S2 control 2 1 0
3 s3 control 3 1 0
4 s4 treated 4 1 1
5 s5 treated 5 1 1
6 s6 treated
Formula: Modeled values:
control treated
~ treatment
1 * Intercept + 1 * Intercept +

0 * treatmenttreated | 1 * treatmenttreated




Model tormulas and design matrices - example 1
One predictor, two levels (with intercept)

Sample table: Design matrix:
sample treatment (Intercept) treatmenttreated
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2 S2 control 2 1 0
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5 s5 treated 5 1 1
6 S6 treated 6 1 1
Formula: Modeled values:
control treated
~ treatment
Intercept +
Intercept treatmenttreated




_ o .,

O (Intercept)
O treatmenttreated

I I
control treated

treatment



Sample table:
sample age
1 sl 21
2 s2 12
3 s3 64
Z s4 44
5 s5 19
6 s6 26
Formula:
~ age

Model formulas and design matrices - example 2

One continuous predictor

Design matrix:

SN O & W DN -

(Intercept) age

1

e e e

21
12
64
44
19
26

Modeled values:

S SZ S3 s4 S5 SO
Intercept + | Intercept + | Intercept + | Intercept + | Intercept + | Intercept +
21 * age 12 * age 64 * age 44 * age 19 * age 26 * age




Model formulas and design matrices - example 3
One predictor, three levels

Sample table:
sample treatment
1 sl control
2 S 2 control
3 s 3 treatA
4 s4 treatA
5 s5 treatB
6 S6 treatB
Formula:

~ treatment

Design matrix:

(Intercept) treatmenttreatA treatmenttreatB

1 1 0 0
2 1 0 0
3 1 1 0
4 1 1 0
5 1 0 1
6 1 0 1
Modeled values:
control treatA treatB
Intercent Intercept + Intercept +
P treatmenttreatA treatmenttreatB




Model formulas and design matrices - example 4
One predictor, paired data (or two predictors)

Sample table:
sample treatment
1 sl control
2 sl treated
3 S2 control
4 S 2 treated
5 s3 control
6 s3 treated
Formula:

~ sample + treatment

Design matrix:

(Intercept) samples2 samples3 treatmenttreated
1 1 0 0 0
2 1 0 0 1
3 1 1 0 0
4 1 1 0 1
5 1 0 1 0
6 1 0 1 1
Modeled values:
ST S2 S3

Intercept + Intercept +

control Intercept samples?2 samples3

Intercept + Intercept + Intercept +

treated treatmenttpreate 9 samples2 + samples3 +

treatmenttreated treatmenttreated




Model formulas and design matrices - example 4
One predictor, paired data (or two predictors)

Sample table:
genotype treatment
1 A control
2 A control
3 A treated
4 A treated
5 B control
6 B control
7 B treated
8 B treated
Formula:

~ genotype —+ treatment

0 J & O & W DN -

Design matrix:

(Intercept) genotypeB treatmenttreated

control

1 0 0
1 0 0
1 0 1
1 0 1
1 1 0
1 1 0
1 1 1
1 1 1
Modeled values:
genotype A genotype B
Intercept Intercept + genotypeB
Intercept + Intercept + genotypeB +
treatmenttreated treatmenttreated

treated
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Model formulas and design matrices - example 5

Sample table:
genotype treatment
1 A control
2 A control
3 A treated
4 A treated
5 B control
6 B control
7 B treated
8 B treated
Formula:

~ genotype * treatment

~ genotype + treatment + genotype:treatment

Two predictors, with interaction

0 J o O & W DN K-

Design matrix:

(Intercept) genotypeB treatmenttreated genotypeB:treatmenttreated

1

L e e L e

0 0

R = B P O O O
R R O O KB Kk O

Modeled values:

control

treated

genotype A

R P O O O O O O

genotype B

Intercept

Intercept + genotypeB

Intercept + treatmenttreated

Intercept + genotypeB +
treatmenttreated +
genotypeB:treatmenttreated
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Model formulas and design matrices - example 6

Sample table:

treat.gt
control.
control.
treated.
treated.
control.
control.
treated.
treated.

© N oUW N
W W wwp P

Formula:

~ 0 + treat.gt

Two predictors, with interaction

00 O U & W DN K-

Design matrix:

treat.gtcontrol.A treat.gttreated.A treat.gtcontrol.B treat.gttreated.B

1

O O O O O O -

0

O O O o r K+ O

Modeled values:

control

treated

genotype A

0

O O r KB O O O

genotype B

R P O O O O O O

treat.gtcontrol.A

treat.gtcontrol.B

treat.gttreated.A

treat.gttreated.B
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