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This module

* Inthe single-cell RNA-sequencing module, the aim is to explain the applicability of
these datasets and the general concepts behind their analysis

e Understanding the concept will be more beneticial in the long term than knowing
which tool you should use right now

* | will therefore not spend time on providing a recommendation of current best tools
for such an analysis, since the field is evolving very fast

* Ifyou are interested in this, please check one of the last slides on workflows and
current best practices

* Please ask questions if something is unclear
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In single-cell RNA-sequencing (scRNA-seq), the RNA of a single cell is sequenced

ONE GENOME FROM MANY

Sequencing the genomes of sngle cells 5 smelar 10 sequencong
those from muibiple Cells < Dot errors are more iy,

» Standard genome sequencing

:>

\’t\o\/

, -,«.: 'l -

A sampie comaning thousands % DNA 15 extracted from 2l the nuciol DNA is Droken im0 Sagrments The sequences are assembled 1o give &
melbons of colls 15 o ind and then seguenced COMMON, "CONsenius aguence

P Single -cell sequencing

Hardly

Single-cell: ..‘,\1 N \, e B
NE L ‘

DNA ampifcation l 'J

A snghe Coll is Gificult 10 sciate, Dt The DNA s exiracted and arroiifnd, Arrgiified DNA s soguenced Errors introduced in earker S804 ke
i Can Do A0 machancCally or with Sunng winCh errors Can Creed SOQUENCE Essembly SMSCUR; the hing
AN AR TR S0rer SOQUENCE Can Nirve g

https://scitechdaily.com/images/one-genome-from-many.|



https://scitechdaily.com/images/one-genome-from-many.jpg

scRNA-seq allows disentanglement of complex biological systems

* Gene expression data on a single-cell level allows us to answer hypotheses of interest
that were previously unavailable with bulk RNA-seq

* Heterogeneity of gene expression between single cells



scRNA-seq allows disentanglement of complex biological systems

* Gene expression data on a single-cell level allows us to answer hypotheses of interest
that were previously unavailable with bulk RNA-seq

* Heterogeneity of gene expression between single cells
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scRNA-seq allows disentanglement of complex biological systems

* Gene expression data on a single-cell level allows us to answer hypotheses of interest

that were previously unavailable with bulk RNA-seqg

* Heterogeneity of gene expression between single cells
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scRNA-seq allows disentanglement of complex biological systems

* Gene expression data on a single-cell level allows us to answer hypotheses of interest

that were previously unavailable with bulk RNA-seqg

* Heterogeneity of gene expression between single cells
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scRNA-seq allows disentanglement of complex biological systems

* Gene expression data on a single-cell level allows us to answer hypotheses of interest
that were previously unavailable with bulk RNA-seq

* Heterogeneity of gene expression between single cells

 |dentification of novel and rare cell types
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scRNA-seq allows disentanglement of complex biological systems

* Gene expression data on a single-cell level allows us to answer hypotheses of interest
that were previously unavailable with bulk RNA-seq

* Heterogeneity of gene expression between single cells
 |dentification of novel and rare cell types

* Reconstructing single-cell developmental/activational trajectories (e.g. development of stem
cell to a mature cell type, activation of cells following treatment)
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scRNA-seq allows disentanglement of complex biological systems

* Gene expression data on a single-cell level allows us to answer hypotheses of interest
that were previously unavailable with bulk RNA-seq

* Heterogeneity of gene expression between single cells

 |dentification of novel and rare cell types

* Reconstructing single-cell developmental/activational trajectories (e.g. development of stem
cell to a mature cell type, activation of cells following treatment)

» Studying sparsely occurring cell populations (e.g., stem cells, embryogenesis)



scRNA-seq allows disentanglement of complex biological systems

* Gene expression data on a single-cell level allows us to answer hypotheses of interest
that were previously unavailable with bulk RNA-seq

* Heterogeneity of gene expression between single cells

 |dentification of novel and rare cell types

* Reconstructing single-cell developmental/activational trajectories (e.g. development of stem
cell to a mature cell type, activation of cells following treatment)

» Studying sparsely occurring cell populations (e.g., stem cells, embryogenesis)

e A quick note on terminology: cell identity represents the combined effect of cell
type (permanent feature, e.g. neuron) and cell state (transient feature, e.g. cell cycle

stage)
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scRNA-seqg remains a tast-paced field with continuous active developments
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scRNA-seqg remains a fast-paced field with continuous active developments
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scRNA-seq protocols may (roughly) be classified in plate-based and droplet-based
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Cool video demonstrating the Drop-seq protocol: https://vimeo.com/128484564
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scRNA-seq protocols may (roughly) be classified in plate-based and droplet-based

* Deciding which protocol you should use essentially depends on the question you wish to answer

* Droplet-based protocols are more suited for

* Examining the composition of a tissue

* |dentifying novel / rare cell types

* Plate-based protocols are more suited for
e Studying a rare cell population with known surface markers (through FACS sorting)
» |soform-level analysis (full-length transcript information)

* Marker gene discovery?

* In general, while droplet-based protocols allow tor a higher throughput, plate-based protocols
seem to have a higher signal-to-noise ratio per cell



Expression quantification differs between protocols

» Plate-based protocols adopt read counting (like in bulk RNA-seq), while droplet-

based protocols typically adopt unique molecular identitiers (UMls) to quantity gene
expression
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Expression quantification differs between protocols
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Expression quantification differs between protocols

* Read counts are affected by e.g. gene length, sequencing depth and PCR
amplitication bias

* UMIs were introduced to avoid this, however this is only true it every cell is
sequenced to saturation, see Vallejos et al. (2017)

e Even if UMIs are used, between-cell normalization is still crucial to obtain reliable
results

* Due to the counting strategy, UMI counts can be interpreted as a proxy for the
number of transcripts originally present in the cell ( <-> read counting)
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Expression quantification differs between protocols

* Due to different counting strategies, count matrices are very different between
orotocols, and thus the data analysis strategies may also vary

* Example: plate-based SMART-Seq dataset

(> counts
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scRNA-seq data

* Asin bulk RNA-seq,

is sparse, more variable than bulk RNA-seq data

a scRNA-seq dataset is often summarized in a count matrix,

where rows represent genes and columns represent cells

* In scRNA-seq, the r

to bulk RNA-seq; p

umber of samples (cells) are generally much higher as compared
ate-based protocols easily gather hundreds of cells, while

droplet-based protocols produce datasets of several thousands of cells

Bulk RNA-seq Plate-based (Smart-Seq2) Droplet-based (10X Chromium)
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scRNA-seq requires thorough quality control (QC)

* |dentification and removal of

* low-quality (e.g. dead/damaged) cells

* doublets (droplets/wells containing 2+ cells)

* empty droplets (droplets/wells without any cells)
 |dentification of these cells typically occurs in a data-driven way

* In plate-based protocols, checking for these may also occur through microscopic
observation (but, time-intensive!)

 Example 1: doublet detection by combining single cells and searching for nearest
neighbours (DoubletFinder method, McGinnnis et al. (2019))

« Example 2: empty droplet detection by testing for a significant deviation from an
ambient solution (EmptyDrops method, Lun et al. (2019))



scRNA-seq requires thorough quality control (QC)

Diagnostic plots from R/Bioconductor package scater: https://bioconductor.org/packages/release/bioc/html/

scater.html. For more examples, check the conquer website: http://imlspenticton.uzh.ch:3838/conguer/
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The data analysis workflow in scRNA-seq is different from bulk RNA-seq

* In bulk RNA-seq, we typically know which groups we want to compare (e.g., treatment
vs. control)

* Insingle-cell RNA-seq, we are often interested in comparing gene expression
between different cell types

* However, we first must identity the cell types in order to be able to compare them

* Therefore, in scRNA-seq, the differential expression analysis is usually preceded by
identification of cell identity, typically through clustering in reduced dimensionality

* Note, that the definition of cell identity can be vague, and may include both cell type
(e.g., leukocyte vs. erythrocyte) and cell state (e.qg., cell cycle phase)



Dimensionality reduction methods for scRNA-seq data

* The goal of dimensionality reduction (DR) is to reduce our G x C matrixtoa Q x C
matrix, where Q << G, while retaining as much signal in the data as possible

* This may serve multiple purposes, such as visualization, identification of batch effects
and clustering in reduced dimensionality

* Traditional DR methods are insufficient, e.g. PCA is inappropriate for count data (Townes
etal. 2019)

* Many dimensionality reduction methods are being used in scRNA-seq

* Most popular ones are non-linear DR methods, e.g. t-SNE and UMAP
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Dimensionality reduction methods for scRNA-seq data
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Dimensionality reduction methods for scRNA-seq data

Demonstration of non-linear dimensionality reduction methods, cells are colored by cell-type.
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Clustering methods for scRNA-seq data

* |f we assume that a different cell identity is reflected by a different gene expression
profile, we can cluster cells to identity cell types

* In clustering, the goal is to group cells together that have similar expression profiles

e Clustering typically occurs in reduced dimension or based on a subset of interesting
genes (curse of dimensionality)

 Example: k-means clustering:
o START: set the number of clusters k, randomly choose k cells to be cluster centroids
* 1.Find closest centroid for each cell
o 2.Group cellstogether that share the closest centroid
» 3. Update centroid based on current group of cells

* Repeat 1-3 until convergence

Visualization: http://shabal.in/visuals/kmeans/1.html



http://shabal.in/visuals/kmeans/1.html

Clustering methods for scRNA-seq data

* k-means has some drawbacks (requires choice of k, results may vary over several
iterations due to randomness of starting point)

 Therefore, alternative methods have been introduced, which include

* Graph-based methods: cluster cells that are connected together (e.g., using
nearest neighbours), e.g. Seurat

* Consensus clustering: cluster cells that are often clustered together over several
clustering algorithms (some cells will be unclustered), e.g. RSEC (Risso et al. (2018))

 |terative clustering: Recluster initially derived clusters, e.q. Tasic et al. (2016)



Why don't we cluster the full gene expression matrix directly?

* Why do we need dimensionality reduction or feature selection of interesting genes
betore clustering?

* Curse of dimensionality: hard to extract the underlying signal it the number of
variables (genes) is much larger than the number of samples (cells)



Why don't we cluster the full gene expression matrix directly?

Based on 500 most variable genes
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Differential expression analysis in scRNA-seq data

* |n differential expression analysis, the aim is to discover marker genes that
differentiate cell types or biological groups

* The statistical models used in scRNA-seq typically build on the GLM framework (see
‘crash course on GLMs' in bulk RNA-seq slides)

* Count-based bulk RNA-seq DE methods (e.g., edgeR, DESeg2) can be directly
leveraged to scRNA-seq data from droplet-based protocols!

* However, scRNA-seq data from plate-based protocols may suffer from zero inflation,
and accounting for this can improve performances (Van den Berge, Perraudeau et al. (2018))



Count distributions and zero inflation

* Reminder: bulk RNA-seq DE methods assume a negative binomial (NB) model on
gene expression Y, for gene g in sample i

Ygi

lOg(Ugi)

Tgi

¢

Model definition:
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rr}gl 2.
Xiﬁg T /Og(Ni)7 3.

where E(Yygi) = p1gi, and Var(Ygi) = pgi + dg ;.

Vol. 26 no. 1 2010, pages 139-140
AP P LI CATI ONS N OTE doi:10.1093/bioinformatics/btp616

Gene expression

edgeR: a Bioconductor package for differential expression

analysis of digital gene expression data
Mark D. Robinson!-2*T Davis J. McCarthy®T and Gordon K. Smyth?2

—~ s

We assume gene expression follows a
NB distribution

We model the mean of the NB using a
log-link

The linear predictor is modeled
according to covariates X; (e.g. control/
treatment) and offset N;

Love et al. Genome Biology (2014) 15:550 .
DOI 10.1186/513059-014-0550-8
,ﬂ (Genome Biology
METHOD Open Access

Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq?2

Michael | Love'?3, Wolfgang Huber? and Simon Anders®”



Count distributions and zero inflation
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Count distributions and zero inflation
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Count distributions and zero inflation

Bulk RNA-seq Plate-based single—cell RNA-seq
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Count distributions and zero inflation

The zero-inflated negative binomial distribution (ZINB) is a two-component mixture
distribution

Yg,' ~ 7Tgi5 -+ (]- — ng)fNB(Ugia ¢g)7

consisting of
a point mass at zero to account for zero inflation, 7gi0

A count component to model gene expression counts, (1 — 7gi)fns(1gis @)



Count distributions and zero inflation
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* Data analysis for single-cell RNA-sequencing datasets

e Considerations: batch effects and post-selection inference



Batch effects

* Batch effects are systematic technical variation in the dataset that are not of interest

* This may represent known sources of variation, e.g. plate effects, different sequencing
runs

* Sometimes, batch effects may be unobserved, and hence they must be estimated
from the data, see ZINB-WaVE (Risso et al. (2018b))

* Inthe Experimental Design session, we looked into incorporating the batch effect as

a covariate in the mean model

e Also in scRNA-seq, care must be taken to avoid confounding, e.g. do not separate
control and treatment cells on two different plates for plate-based scRNA-seq



Nuisance effects
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Removing batch eftects aids identitication of biological cell types
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Post-selection inference

* There is a caveat in first identitying cell types and then performing differential
expression analysis on the same data: we expect an increased false positive rate, if
there is no true biological signal between the compared groups

* Intuitively: we are using the same data twice

* A quick taste of what happens: https://gist.github.com/koenvandenberge/
c07d56c7c62e1c927291027329c7134e
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scRNA-seq allows the study of dynamic biological systems

* Dynamical systems are often best represented by a continuous transition
* This continuity is represented with a trajectory
* Based on the trajectory, one can estimate pseudotime for each cell

* Pseudotime corresponds to the length of the trajectory, and can be considered as a
oroxy for true developmental time

Street et al. (2018)



scRNA-seq allows the study of dynamic biological systems
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scRNA-seq allows the study ot dynamic bio
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In dynamic systems, groups for differential expression analysis cannot be easily derived

Previous work has performed cluster-based comparisons. This is suboptimal, because:
 Heterogeneous clusters
» (Clusters (often) have no fixed biological meaning
* Which clusters to compare?
 Many comparisons per gene inflates gene-level FDR

 How to derive shortlist of interesting genes?
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In dynamic systems, groups for differential expression analysis cannot be easily derived

Instead, several methods have proposed smoothing gene expression along
pseudotime
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In dynamic systems, groups for differential expression analysis cannot be easily derived

Instead, several methods have proposed smoothing gene expression along
pseudotime
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In dynamic systems, groups for differential expression analysis cannot be easily derived

Several methods have proposed smoothing gene expression along pseudotime

* Monocle 3 allows a range of functionalities, see https://cole-trapnell-lab.github.io/

monocle3/monocle3_docs/#differential-expression-analysis

hih-4

/. r : : log10(Expression)

1.5

1.0

UMAP 2

10 -10
UMAP 1


https://cole-trapnell-lab.github.io/monocle3/monocle3_docs/#differential-expression-analysis
https://cole-trapnell-lab.github.io/monocle3/monocle3_docs/#differential-expression-analysis
https://cole-trapnell-lab.github.io/monocle3/monocle3_docs/#differential-expression-analysis

In dynamic systems, groups for differential expression analysis cannot be easily derived

* tradeSeq allows assessment of interpretable hypotheses
e Within-lineage ditferential expression
e Association of gene expression with pseudotime

e Comparing progenitor vs. differentiated cell population

e Between-lineage differential expression
e Global difterential expression pattern
e Compare end points of lineages

e Different expression pattern in a confined region selected by the user



Example: Within-lineage differential expression with tradeSeqg

* Global association of gene expression with pseudotime for a lineage
e Comparing start versus end points of a lineage (shown)
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Example: Within-lineage differential expression with tradeSeqg

* Global association of gene expression with pseudotime for a lineage

e Comparing start versus end points of a lineage (shown)
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Example: Within-lineage differential expression with tradeSeqg

* Global association of gene expression with pseudotime for a lineage

e Comparing start versus end points of a lineage (shown)
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Genes can be clustered according to their expression pattern
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Novel technologies are allowing for spatial scRNA-seqg

» Map dissociated cells using landmark genes from which spatial expression is known

(Satija et a/ (2015)) Gene X Gene Y Gene Z
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Novel technologies are allowing for spatial scRNA-seqg

e Using fluorescence in situ hybridization over multiple rounds, e.g., segFISH+ (Engetal.
(2019))

* Transferring tissue section on a surface covered with barcoded beads (Rodriques et al.

(2 019 )) A Bead deposition In situ indexing B
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Recent years: development of many single-cell multi-omics protocols

* RNA is only one of the many modalities one can study within a single cell

e Many novel developments have focussed on assessing RNA simultaneously with
other modalities within the same single cell, e.g.

e REAP-seq, CITE-seq: RNA and protein abundance

e sci-CAR: RNA abundance and chromatin conformation (i.e., ATAC-seq)
e G&T-seq: DNA-seqg and RNA-seq

e sc-GEM: RNA-seq, with genotype and methylation information



Want to get your hands dirty? Here's where to start

e A step-by-step workflow tfor low-level analysis of single-cell RNA-seq data with
Bioconductor: https://11000research.com/articles/5-2122

e Bioconductor workflow for single-cell RNA sequencing: Normalization, dimensionality
reduction, clustering and lineage inference https://t1000research.com/articles/6-1158

* Current best practices in single-cell RNA-seqg analysis: https://www.embopress.org/
doi/pdt/10.15252/msb.20188746

* Orchestrating single-cell analysis with Bioconductor: https://www.biorxiv.org/content/
10.1101/590562v1

 Hemberg Lab single-cell RNA-seq course website: https://scrnaseg-
course.cog.sanger.ac.uk/website/index.html
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