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• In the single-cell RNA-sequencing module, the aim is to explain the applicability of 
these datasets and the general concepts behind their analysis 

• Understanding the concept will be more beneficial in the long term than knowing 
which tool you should use right now 

• I will therefore not spend time on providing a recommendation of current best tools 
for such an analysis, since the field is evolving very fast 

• If you are interested in this, please check one of the last slides on workflows and 
current best practices 

• Please ask questions if something is unclear
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In single-cell RNA-sequencing (scRNA-seq), the RNA of a single cell is sequenced

https://scitechdaily.com/images/one-genome-from-many.jpg

Bulk:

Single-cell:
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• Gene expression data on a single-cell level allows us to answer hypotheses of interest 
that were previously unavailable with bulk RNA-seq 

• Heterogeneity of gene expression between single cells

scRNA-seq allows disentanglement of complex biological systems
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• Gene expression data on a single-cell level allows us to answer hypotheses of interest 
that were previously unavailable with bulk RNA-seq 

• Heterogeneity of gene expression between single cells 

• Identification of novel and rare cell types 

• Reconstructing single-cell developmental/activational trajectories (e.g. development of stem 
cell to a mature cell type, activation of cells following treatment) 

• Studying sparsely occurring cell populations (e.g., stem cells, embryogenesis) 

• A quick note on terminology: cell identity represents the combined effect of cell 
type (permanent feature, e.g. neuron) and cell state (transient feature, e.g. cell cycle 
stage)

scRNA-seq allows disentanglement of complex biological systems
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scRNA-seq remains a fast-paced field with continuous active developments

Svensson et al. (2018)



scRNA-seq remains a fast-paced field with continuous active developments

https://twitter.com/vallens/status/
1113982015517282304
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scRNA-seq protocols may (roughly) be classified in plate-based and droplet-based

Griffiths et al. (2018)

Cool video demonstrating the Drop-seq protocol: https://vimeo.com/128484564

https://vimeo.com/128484564


• Deciding which protocol you should use essentially depends on the question you wish to answer 

• Droplet-based protocols are more suited for 
• Examining the composition of a tissue 
• Identifying novel / rare cell types 

• Plate-based protocols are more suited for 
• Studying a rare cell population with known surface markers (through FACS sorting) 
• Isoform-level analysis (full-length transcript information) 
• Marker gene discovery? 

• In general, while droplet-based protocols allow for a higher throughput, plate-based protocols 
seem to have a higher signal-to-noise ratio per cell

scRNA-seq protocols may (roughly) be classified in plate-based and droplet-based



• Plate-based protocols adopt read counting (like in bulk RNA-seq), while droplet-
based protocols typically adopt unique molecular identifiers (UMIs) to quantify gene 
expression

Expression quantification differs between protocols

Macosko et al. (2015)



Expression quantification differs between protocols
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• Read counts are affected by e.g. gene length, sequencing depth and PCR 
amplification bias 

• UMIs were introduced to avoid this, however this is only true if every cell is 
sequenced to saturation, see Vallejos et al. (2017) 

• Even if UMIs are used, between-cell normalization is still crucial to obtain reliable 
results 

• Due to the counting strategy, UMI counts can be interpreted as a proxy for the 
number of transcripts originally present in the cell ( <-> read counting)

Expression quantification differs between protocols
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• Due to different counting strategies, count matrices are very different between 
protocols, and thus the data analysis strategies may also vary 

• Example: plate-based SMART-Seq dataset 

• Example: droplet-based UMI dataset

Expression quantification differs between protocols

- High positive counts mixed with 
zeros 

- Zero abundance roughly ~50-75% 
- Typically lower number of cells

- Low positive counts mixed with 
even more zeros 

- Zero abundance typically >90% 
- Typically higher number of cells



• As in bulk RNA-seq, a scRNA-seq dataset is often summarized in a count matrix, 
where rows represent genes and columns represent cells 

• In scRNA-seq, the number of samples (cells) are generally much higher as compared 
to bulk RNA-seq; plate-based protocols easily gather hundreds of cells, while 
droplet-based protocols produce datasets of several thousands of cells

scRNA-seq data is sparse, more variable than bulk RNA-seq data



• Identification and removal of 
• low-quality (e.g. dead/damaged) cells 
• doublets (droplets/wells containing 2+ cells) 
• empty droplets (droplets/wells without any cells) 

• Identification of these cells typically occurs in a data-driven way 
• In plate-based protocols, checking for these may also occur through microscopic 

observation (but, time-intensive!)  
• Example 1: doublet detection by combining single cells and searching for nearest 

neighbours (DoubletFinder method, McGinnnis et al. (2019)) 
• Example 2: empty droplet detection by testing for a significant deviation from an 

ambient solution (EmptyDrops method, Lun et al. (2019))

scRNA-seq requires thorough quality control (QC)



scRNA-seq requires thorough quality control (QC)

McCarthy et al. (2017)

Diagnostic plots from R/Bioconductor package scater: https://bioconductor.org/packages/release/bioc/html/
scater.html. For more examples, check the conquer website: http://imlspenticton.uzh.ch:3838/conquer/

https://bioconductor.org/packages/release/bioc/html/scater.html
https://bioconductor.org/packages/release/bioc/html/scater.html
http://imlspenticton.uzh.ch:3838/conquer/
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• In bulk RNA-seq, we typically know which groups we want to compare (e.g., treatment 
vs. control) 

• In single-cell RNA-seq, we are often interested in comparing gene expression 
between different cell types 

• However, we first must identify the cell types in order to be able to compare them 
• Therefore, in scRNA-seq, the differential expression analysis is usually preceded by 

identification of cell identity, typically through clustering in reduced dimensionality 
• Note, that the definition of cell identity can be vague, and may include both cell type 

(e.g., leukocyte vs. erythrocyte) and cell state (e.g., cell cycle phase)

The data analysis workflow in scRNA-seq is different from bulk RNA-seq 



• The goal of dimensionality reduction (DR) is to reduce our G x C matrix to a Q x C 
matrix, where Q << G, while retaining as much signal in the data as possible 

• This may serve multiple purposes, such as visualization, identification of batch effects 
and clustering in reduced dimensionality 

• Traditional DR methods are insufficient, e.g. PCA is inappropriate for count data (Townes 
et al. 2019) 

• Many dimensionality reduction methods are being used in scRNA-seq 
• Most popular ones are non-linear DR methods, e.g. t-SNE and UMAP

Dimensionality reduction methods for scRNA-seq data



Dimensionality reduction methods for scRNA-seq data

Demonstration of linear dimensionality reduction methods, cells are colored by cell-type.

Data from Tasic et al. (2016)



Dimensionality reduction methods for scRNA-seq data

Demonstration of non-linear dimensionality reduction methods, cells are colored by cell-type.

Data from Tasic et al. (2016)



• If we assume that a different cell identity is reflected by a different gene expression 
profile, we can cluster cells to identify cell types 

• In clustering, the goal is to group cells together that have similar expression profiles 
• Clustering typically occurs in reduced dimension or based on a subset of interesting 

genes (curse of dimensionality) 
• Example: k-means clustering: 

• START: set the number of clusters k, randomly choose k cells to be cluster centroids 
• 1. Find closest centroid for each cell 
• 2. Group cells together that share the closest centroid 
• 3. Update centroid based on current group of cells 
• Repeat 1-3 until convergence 
• Visualization: http://shabal.in/visuals/kmeans/1.html

Clustering methods for scRNA-seq data

http://shabal.in/visuals/kmeans/1.html


• k-means has some drawbacks (requires choice of k, results may vary over several 
iterations due to randomness of starting point) 

• Therefore, alternative methods have been introduced, which include 
• Graph-based methods: cluster cells that are connected together (e.g., using 

nearest neighbours), e.g. Seurat 
• Consensus clustering: cluster cells that are often clustered together over several 

clustering algorithms (some cells will be unclustered), e.g. RSEC (Risso et al. (2018)) 

• Iterative clustering: Recluster initially derived clusters, e.g. Tasic et al. (2016)

Clustering methods for scRNA-seq data



• Why do we need dimensionality reduction or feature selection of interesting genes 
before clustering?  

• Curse of dimensionality: hard to extract the underlying signal if the number of 
variables (genes) is much larger than the number of samples (cells)

Why don’t we cluster the full gene expression matrix directly?



Data from Tasic et al. (2016)

Based on 500 most variable genes Based on 10K most variable genes

Why don’t we cluster the full gene expression matrix directly?
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• In differential expression analysis, the aim is to discover marker genes that 
differentiate cell types or biological groups 

• The statistical models used in scRNA-seq typically build on the GLM framework (see 
‘crash course on GLMs’ in bulk RNA-seq slides) 

• Count-based bulk RNA-seq DE methods (e.g., edgeR, DESeq2) can be directly 
leveraged to scRNA-seq data from droplet-based protocols! 

• However, scRNA-seq data from plate-based protocols may suffer from zero inflation, 
and accounting for this can improve performances (Van den Berge, Perraudeau et al. (2018))

Differential expression analysis in scRNA-seq data



• Reminder: bulk RNA-seq DE methods assume a negative binomial (NB) model on 
gene expression       for gene g in sample i

Count distributions and zero inflation

Bulk RNA-seq DE models typically assume a negative binomial

Novel technologies bring new challenges.
Model should be tailored to the underlying data generating mechanism.

Traditional bulk RNA-seq models often assume a negative binomial (NB)
GLM for gene expression Ygi of gene g in sample i

8
<

:

Ygi ⇠ NB(µgi ,�g )
log(µgi ) = ⌘gi

⌘gi = Xi�g + log(Ni ),

where E (Ygi ) = µgi , and Var(Ygi ) = µgi + �gµ2
gi .

35

Ygi

Model definition: 
1. We assume gene expression follows a 

NB distribution 
2. We model the mean of the NB using a 

log-link 
3. The linear predictor is modeled 

according to covariates Xi (e.g. control/
treatment) and offset Ni
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The zero-inflated negative binomial distribution (ZINB) is a two-component mixture 
distribution 

consisting of 
• a point mass at zero to account for zero inflation, 
• A count component to model gene expression counts,

The ZINB mixture distribution resolves zero inflation in scRNA-seq

The zero-inflated negative binomial (ZINB) distribution is a
two-component mixture distribution,

Ygi ⇠ ⇡gi� + (1� ⇡gi )fNB(µgi ,�g ),

consisting of
I A point mass at zero to account for zero inflation, ⇡gi�
I A count component to model gene expression counts,

(1� ⇡gi )fNB(µgi ,�g )
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• Batch effects are systematic technical variation in the dataset that are not of interest 
• This may represent known sources of variation, e.g. plate effects, different sequencing 

runs 
• Sometimes, batch effects may be unobserved, and hence they must be estimated 

from the data, see ZINB-WaVE (Risso et al. (2018b)) 
• In the Experimental Design session, we looked into incorporating the batch effect as 

a covariate in the mean model 
• Also in scRNA-seq, care must be taken to avoid confounding, e.g. do not separate 

control and treatment cells on two different plates for plate-based scRNA-seq

Batch effects



Nuisance effects may influence dimensionality reduction

Hicks et al. (2018)



Removing batch effects aids identification of biological cell types
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batch-correction vector is then calculated as a weighted average of 
these pair-specific vectors, as computed with a Gaussian kernel. This 
approach stabilizes the correction for each cell and ensures that it 
changes smoothly between adjacent cells in the high-dimensional 
expression space. This Gaussian smoothing of batch vectors enables 
a locally linear batch correction; i.e., each MNN-pair batch vector 
contributes to the batch effect for cells in the neighborhood of the 
corresponding pair within each batch. Such locally linear correction 
of batch effects results in an overall correction that can tolerate non-
constant batch effects (Supplementary Fig. 1). We emphasize that 
this correction is performed for all cells, regardless of whether they 
participate in a MNN pair. Thus, correction can be performed on all 
cells in each batch, even if they do not have a corresponding cell type 
in the other batches.

MNN correction outperforms existing methods on simulated 
data
We generated simulated data for a simple scenario with two batches 
of cells, each consisting of varying proportions of three cell types 
(Online Methods). We applied each of three batch-correction meth-
ods—our MNN-based correction method, limma and ComBat—to 
the simulated data, then evaluated the results by inspecting t-SNE 
plots16 (Online Methods). Proper removal of the batch effect should 
result in the formation of three clusters, one for each cell type, such 
that each cluster contains a mixture of cells from both batches. 
However, we observed this ideal result only after MNN correction 
(Fig. 2). Expression data that were uncorrected or corrected with the 
other methods exhibited at least one cluster containing cells from 
only a single batch, thus indicating that the batch effect was not fully 
removed. This result is fully attributable to the differences in popula-
tion composition, as discussed earlier. Repeating the simulation with 
identical proportions of all cell types in each batch yielded equivalent 
performance for all methods (Supplementary Fig. 2).

MNN correction outperforms existing methods on 
hematopoietic data
To demonstrate the applicability of our method to real data, we con-
sidered two hematopoietic data sets generated in different laboratories 
through two different scRNA-seq protocols. In the first data set12, the 
authors used the SMART-seq2 protocol17 to profile single cells from 
hematopoietic stem and progenitor cell populations in 12-week-old 
female mice. Using marker expression profiles from fluorescence-acti-
vated cell sorting (FACS), we retrospectively assigned known cell-type 
labels to cells (Online Methods). These labels included multipotent 
progenitors, lymphoid-primed multipotent progenitors, hematopoi-
etic stem and progenitor cells, hematopoietic stem cells, common 
myeloid progenitors (CMPs), granulocyte–monocyte progenitors 
(GMPs) and megakaryocyte–erythrocyte progenitors (MEPs). In the 
second data set18, the authors used the massively parallel single-cell 
RNA-sequencing (MARS-seq) protocol to assess single-cell hetero-
geneity in myeloid progenitors from 6-to 8-week-old female mice. 
Again, indexed FACS was used to assign a cell-type label (MEP, GMP 
or CMP) to each cell.

To assess performance, we performed t-SNE dimensionality reduc-
tion on the expression data for the highly variable genes, before and 
after correction with each of the three methods (MNN, limma and 
ComBat) (Fig. 3a–d and Online Methods). Only MNN correction 
correctly merged the cell types that were shared between batches, 
i.e., CMPs, MEPs and GMPs, while preserving the underlying dif-
ferentiation hierarchy12,18 (Fig. 3e). In contrast, the shared cell types 
still clustered by batch after correction with limma or ComBat, thus 

indicating that the batch effect had not been completely removed 
(coloring by batch in Supplementary Fig. 3). This result is attribut-
able to the differences in cell-type composition between batches and 
is consistent with the simulation results. To ensure that these results 
were not due to an idiosyncrasy of the t-SNE method, we repeated 
our analysis with an alternative dimensionality-reduction approach 
(PCA) using only the cell types in common between the two batches 
(Fig. 3f–i). Among the methods, MNN correction was still the most 
effective at removing the batch effect.

As a justification for the orthogonality of the batch effect to the 
biological hyperplane, we present a histogram of the angle between 
the batch vectors calculated by MNN and the first two singular value 
decomposition components of the reference batch used in MNN 
(i.e., the SMART-seq2 data set). Most angles are close to 90°, thus 
supporting the near-orthogonality assumption (Supplementary  
Fig. 3e). A diffusion map19 of the MNN-corrected data (Supplementary  
Fig. 3f–h) shows the same differentiation hierarchy of cell types as 
that in Figure 3e. Repeating the same analysis on a subset of randomly 
sampled genes (1,500 out of the total of 3,904 highly variable genes) 
yielded similar results, thus demonstrating the robustness of our 
analysis with respect to the input gene set (Supplementary Fig. 4).

MNN correction outperforms existing methods on a pancreas 
data set
We further tested the ability of our method to combine more complex 
data sets generated through a variety of methods. Here, we focused 
on the pancreas because it is a highly heterogeneous tissue with sev-
eral well-defined cell types. We combined scRNA-seq data on human 
pancreas cells from four different publicly available data sets20–23 
generated through two different scRNA-seq protocols (SMART-seq2 
and scRNA-seq by multiplexed linear amplification (CEL-seq)/CEL-
seq2). Cell-type labels were taken from the provided metadata or were 
derived according to the methodology described in the original pub-
lication (further details of data preprocessing in Online Methods).
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Figure 2 t-SNE plots of simulated scRNA-seq data containing two  
batches of different cell types (with each batch containing n = 1,000 
cells). (a–d) Data before correction (a) and after correction with our MNN 
method (b), limma (c) or ComBat (d). In this simulation, each batch 
(closed circle or open triangle) contained different numbers of cells in 
each of three cell types (specified by color).
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batch-correction vector is then calculated as a weighted average of 
these pair-specific vectors, as computed with a Gaussian kernel. This 
approach stabilizes the correction for each cell and ensures that it 
changes smoothly between adjacent cells in the high-dimensional 
expression space. This Gaussian smoothing of batch vectors enables 
a locally linear batch correction; i.e., each MNN-pair batch vector 
contributes to the batch effect for cells in the neighborhood of the 
corresponding pair within each batch. Such locally linear correction 
of batch effects results in an overall correction that can tolerate non-
constant batch effects (Supplementary Fig. 1). We emphasize that 
this correction is performed for all cells, regardless of whether they 
participate in a MNN pair. Thus, correction can be performed on all 
cells in each batch, even if they do not have a corresponding cell type 
in the other batches.

MNN correction outperforms existing methods on simulated 
data
We generated simulated data for a simple scenario with two batches 
of cells, each consisting of varying proportions of three cell types 
(Online Methods). We applied each of three batch-correction meth-
ods—our MNN-based correction method, limma and ComBat—to 
the simulated data, then evaluated the results by inspecting t-SNE 
plots16 (Online Methods). Proper removal of the batch effect should 
result in the formation of three clusters, one for each cell type, such 
that each cluster contains a mixture of cells from both batches. 
However, we observed this ideal result only after MNN correction 
(Fig. 2). Expression data that were uncorrected or corrected with the 
other methods exhibited at least one cluster containing cells from 
only a single batch, thus indicating that the batch effect was not fully 
removed. This result is fully attributable to the differences in popula-
tion composition, as discussed earlier. Repeating the simulation with 
identical proportions of all cell types in each batch yielded equivalent 
performance for all methods (Supplementary Fig. 2).

MNN correction outperforms existing methods on 
hematopoietic data
To demonstrate the applicability of our method to real data, we con-
sidered two hematopoietic data sets generated in different laboratories 
through two different scRNA-seq protocols. In the first data set12, the 
authors used the SMART-seq2 protocol17 to profile single cells from 
hematopoietic stem and progenitor cell populations in 12-week-old 
female mice. Using marker expression profiles from fluorescence-acti-
vated cell sorting (FACS), we retrospectively assigned known cell-type 
labels to cells (Online Methods). These labels included multipotent 
progenitors, lymphoid-primed multipotent progenitors, hematopoi-
etic stem and progenitor cells, hematopoietic stem cells, common 
myeloid progenitors (CMPs), granulocyte–monocyte progenitors 
(GMPs) and megakaryocyte–erythrocyte progenitors (MEPs). In the 
second data set18, the authors used the massively parallel single-cell 
RNA-sequencing (MARS-seq) protocol to assess single-cell hetero-
geneity in myeloid progenitors from 6-to 8-week-old female mice. 
Again, indexed FACS was used to assign a cell-type label (MEP, GMP 
or CMP) to each cell.

To assess performance, we performed t-SNE dimensionality reduc-
tion on the expression data for the highly variable genes, before and 
after correction with each of the three methods (MNN, limma and 
ComBat) (Fig. 3a–d and Online Methods). Only MNN correction 
correctly merged the cell types that were shared between batches, 
i.e., CMPs, MEPs and GMPs, while preserving the underlying dif-
ferentiation hierarchy12,18 (Fig. 3e). In contrast, the shared cell types 
still clustered by batch after correction with limma or ComBat, thus 

indicating that the batch effect had not been completely removed 
(coloring by batch in Supplementary Fig. 3). This result is attribut-
able to the differences in cell-type composition between batches and 
is consistent with the simulation results. To ensure that these results 
were not due to an idiosyncrasy of the t-SNE method, we repeated 
our analysis with an alternative dimensionality-reduction approach 
(PCA) using only the cell types in common between the two batches 
(Fig. 3f–i). Among the methods, MNN correction was still the most 
effective at removing the batch effect.

As a justification for the orthogonality of the batch effect to the 
biological hyperplane, we present a histogram of the angle between 
the batch vectors calculated by MNN and the first two singular value 
decomposition components of the reference batch used in MNN 
(i.e., the SMART-seq2 data set). Most angles are close to 90°, thus 
supporting the near-orthogonality assumption (Supplementary  
Fig. 3e). A diffusion map19 of the MNN-corrected data (Supplementary  
Fig. 3f–h) shows the same differentiation hierarchy of cell types as 
that in Figure 3e. Repeating the same analysis on a subset of randomly 
sampled genes (1,500 out of the total of 3,904 highly variable genes) 
yielded similar results, thus demonstrating the robustness of our 
analysis with respect to the input gene set (Supplementary Fig. 4).

MNN correction outperforms existing methods on a pancreas 
data set
We further tested the ability of our method to combine more complex 
data sets generated through a variety of methods. Here, we focused 
on the pancreas because it is a highly heterogeneous tissue with sev-
eral well-defined cell types. We combined scRNA-seq data on human 
pancreas cells from four different publicly available data sets20–23 
generated through two different scRNA-seq protocols (SMART-seq2 
and scRNA-seq by multiplexed linear amplification (CEL-seq)/CEL-
seq2). Cell-type labels were taken from the provided metadata or were 
derived according to the methodology described in the original pub-
lication (further details of data preprocessing in Online Methods).
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Figure 2 t-SNE plots of simulated scRNA-seq data containing two  
batches of different cell types (with each batch containing n = 1,000 
cells). (a–d) Data before correction (a) and after correction with our MNN 
method (b), limma (c) or ComBat (d). In this simulation, each batch 
(closed circle or open triangle) contained different numbers of cells in 
each of three cell types (specified by color).

Haghverdi et al. (2018)



• There is a caveat in first identifying cell types and then performing differential 
expression analysis on the same data: we expect an increased false positive rate, if 
there is no true biological signal between the compared groups 

• Intuitively: we are using the same data twice 
• A quick taste of what happens: https://gist.github.com/koenvandenberge/

c07d56c7c69e1c927291027329c7f34e

Post-selection inference

https://gist.github.com/koenvandenberge/c07d56c7c69e1c927291027329c7f34e
https://gist.github.com/koenvandenberge/c07d56c7c69e1c927291027329c7f34e
https://gist.github.com/koenvandenberge/c07d56c7c69e1c927291027329c7f34e
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• Dynamical systems are often best represented by a continuous transition 
•  This continuity is represented with a trajectory 
•  Based on the trajectory, one can estimate pseudotime for each cell 
•  Pseudotime corresponds to the length of the trajectory, and can be considered as a 

proxy for true developmental time

scRNA-seq allows the study of dynamic biological systems

Street et al. (2018)



scRNA-seq allows the study of dynamic biological systems
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scRNA-seq allows the study of dynamic biological systems

Cao et al. (2019)
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Previous work has performed cluster-based comparisons. This is suboptimal, because: 
• Heterogeneous clusters 
•  Clusters (often) have no fixed biological meaning 
•  Which clusters to compare? 
•  Many comparisons per gene inflates gene-level FDR  
• How to derive shortlist of interesting genes?

In dynamic systems, groups for differential expression analysis cannot be easily derived

Data from Paul et al. (2015)



Instead, several methods have proposed smoothing gene expression along 
pseudotime

In dynamic systems, groups for differential expression analysis cannot be easily derived



Instead, several methods have proposed smoothing gene expression along 
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Several methods have proposed smoothing gene expression along pseudotime 
• Monocle 3 allows a range of functionalities, see https://cole-trapnell-lab.github.io/

monocle3/monocle3_docs/#differential-expression-analysis

In dynamic systems, groups for differential expression analysis cannot be easily derived

https://cole-trapnell-lab.github.io/monocle3/monocle3_docs/#differential-expression-analysis
https://cole-trapnell-lab.github.io/monocle3/monocle3_docs/#differential-expression-analysis
https://cole-trapnell-lab.github.io/monocle3/monocle3_docs/#differential-expression-analysis


• tradeSeq allows assessment of interpretable hypotheses 
• Within-lineage differential expression 

• Association of gene expression with pseudotime 

• Comparing progenitor vs. differentiated cell population 

• Between-lineage differential expression 

• Global differential expression pattern 

• Compare end points of lineages 

• Different expression pattern in a confined region selected by the user

In dynamic systems, groups for differential expression analysis cannot be easily derived



• Global association of gene expression with pseudotime for a lineage 
• Comparing start versus end points of a lineage (shown)

Example: Within-lineage differential expression with tradeSeq



• Global association of gene expression with pseudotime for a lineage 
• Comparing start versus end points of a lineage (shown)

Example: Within-lineage differential expression with tradeSeq



• Global association of gene expression with pseudotime for a lineage 
• Comparing start versus end points of a lineage (shown)

Example: Within-lineage differential expression with tradeSeq



Genes can be clustered according to their expression pattern
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• Map dissociated cells using landmark genes from which spatial expression is known 
(Satija et al. (2015))

Novel technologies are allowing for spatial scRNA-seq

Sajita et al. (2015)



• Using fluorescence in situ hybridization over multiple rounds, e.g., seqFISH+ (Eng et al. 
(2019)) 

• Transferring tissue section on a surface covered with barcoded beads (Rodriques et al. 
(2019))

Novel technologies are allowing for spatial scRNA-seq

Rodriques et al. (2019)



• RNA is only one of the many modalities one can study within a single cell 
• Many novel developments have focussed on assessing RNA simultaneously with 

other modalities within the same single cell, e.g. 
• REAP-seq, CITE-seq: RNA and protein abundance 

• sci-CAR: RNA abundance and chromatin conformation (i.e., ATAC-seq) 

• G&T-seq: DNA-seq and RNA-seq 

• sc-GEM: RNA-seq, with genotype and methylation information 

• … 

Recent years: development of many single-cell multi-omics protocols



• A step-by-step workflow for low-level analysis of single-cell RNA-seq data with 
Bioconductor: https://f1000research.com/articles/5-2122 

• Bioconductor workflow for single-cell RNA sequencing: Normalization, dimensionality 
reduction, clustering and lineage inference https://f1000research.com/articles/6-1158 

• Current best practices in single-cell RNA-seq analysis: https://www.embopress.org/
doi/pdf/10.15252/msb.20188746 

• Orchestrating single-cell analysis with Bioconductor: https://www.biorxiv.org/content/
10.1101/590562v1 

• Hemberg Lab single-cell RNA-seq course website: https://scrnaseq-
course.cog.sanger.ac.uk/website/index.html

Want to get your hands dirty? Here’s where to start

https://f1000research.com/articles/5-2122
https://f1000research.com/articles/6-1158
https://www.embopress.org/doi/pdf/10.15252/msb.20188746
https://www.embopress.org/doi/pdf/10.15252/msb.20188746
https://www.biorxiv.org/content/10.1101/590562v1
https://www.biorxiv.org/content/10.1101/590562v1
https://scrnaseq-course.cog.sanger.ac.uk/website/index.html
https://scrnaseq-course.cog.sanger.ac.uk/website/index.html
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