Differential analysis for label free mass spectrometry based proteomics

Lieven Clement

Bioinformatics Summer School 2019, June 1st-5th, UCLouvain,
Louvain-la-Neuve, Belgium
(1) Background
(2) Peptide based workflow
(3) Robust summarisation \& Inference
(9) Experimental design

statOmics, Ghent University

Challenges in Label Free MS-based Quatitative proteomics

Quantification Identification

Challenges in Label Free MS-based Quatitative proteomics

Quantification Identification

Challenges in Label Free MS-based Quatitative proteomics

- Huge variability

Quantification Identification

Challenges in Label Free MS-based Quatitative proteomics

Peptide characteristics

- Modifications
- Ionisation efficiency
- Outliers
- Huge variability
- MS^{2} selection on peptide abundance
- Context dependent Identification
- Non-random missingness

Challenges in Label Free MS-based Quatitative proteomics

Peptide characteristics

- Modifications
- Ionisation efficiency
- Outliers

- Huge variability
- $M S^{2}$ selection on peptide abundance

- Context dependent Identification
- Non-random missingness

Unbalanced peptides identifications across samples and messy data

Challenges in Label Free MS-based Quatitative proteomics MS-based proteomics returns peptides: pieces of proteins

Challenges in Label Free MS-based Quatitative proteomics

We need information on protein level!

CPTAC Spike-in Study

Digested
UPS1 protein mix

Digested yeast proteins

Concentration UPS1

5 spike-in concentrations: 6A to 6E

x3

x3

- Same trypsin-digested yeast proteome background in each sample
- Trypsin-digested Sigma UPS1 standard: 48 different human proteins spiked in at 5 different concentrations (treatment A-E)
- Samples repeatedly run on different instruments in different labs
- After MaxQuant search with match between runs option
- 41% of all proteins are quantified in all samples
- 6.6% of all peptides are quantified in all samples
\rightarrow vast amount of missingness

Pre-processing Statistical Analysis

Summarization

CPTAC (Lab2, P12081ups|SYHC_HUMAN_UPS) Median Summarization

Summarization

- Strong peptide effect
- Unbalanced peptide identification
- Summarization bias
- Different precision of protein level summaries

CPTAC (Lab2, P12081ups|SYHC_HUMAN_UPS) Median Summarization

MSqRob workflow (Goeminne et al. 2016 MCP, PMID: 26566788)

$$
y_{g r p}=\beta_{g}^{\text {group }}+u_{r}^{\text {run }}+\beta_{p}^{\text {pep }}+\epsilon_{r p}
$$

protein-level

- $\beta_{g}^{\text {group }}$: spike-in
- random run effect $u_{r}^{\text {run }} \sim N\left(0, \sigma_{\text {run }}^{2}\right)$ \rightarrow Addresses pseudo-replication
peptide-level
- peptide specific effect $\beta_{p}^{\text {pep }}$
- within run error $\epsilon_{r p} \sim N\left(0, \sigma_{\epsilon}^{2}\right)$

MSqRob workflow (Goeminne et al. 2016 MCP, PMID: 26566788)

$$
y_{g r p}=\beta_{g}^{\text {group }}+u_{r}^{\text {run }}+\beta_{p}^{\text {pep }}+\epsilon_{r p}
$$

protein-level

- $\beta_{g}^{\text {group }}$: spike-in
- random run effect $u_{r}^{\text {run }} \sim N\left(0, \sigma_{\text {run }}^{2}\right)$ \rightarrow Addresses pseudo-replication
peptide-level
- peptide specific effect $\beta_{p}^{\text {pep }}$
- within run error $\epsilon_{r p} \sim N\left(0, \sigma_{\epsilon}^{2}\right)$

MSqRob workflow (Goeminne et al. 2016 MCP, PMID: 26566788)

$$
y_{g r p}=\beta_{g}^{\text {group }}+u_{r}^{\text {run }}+\beta_{p}^{\text {pep }}+\epsilon_{r p}
$$

protein-level

- $\beta_{g}^{\text {group }}$: spike-in
- random run effect $u_{r}^{\text {run }} \sim N\left(0, \sigma_{\text {run }}^{2}\right)$ \rightarrow Addresses pseudo-replication peptide-level
- peptide specific effect $\beta_{p}^{\text {pep }}$
- within run error $\epsilon_{r p} \sim N\left(0, \sigma_{\epsilon}^{2}\right)$

MSqRob workflow (Goeminne et al. 2016 MCP, PMID: 26566788)

$$
y_{g r p}=\beta_{g}^{\text {group }}+u_{r}^{\text {run }}+\beta_{p}^{\text {pep }}+\epsilon_{r p}
$$

protein-level

- $\beta_{g}^{\text {group }}$: spike-in
- random run effect $u_{r}^{\text {run }} \sim N\left(0, \sigma_{\text {run }}^{2}\right)$ \rightarrow Addresses pseudo-replication peptide-level
- peptide specific effect $\beta_{p}^{\text {pep }}$
- within run error $\epsilon_{r p} \sim N\left(0, \sigma_{\epsilon}^{2}\right)$

Estimation
(1) Robust regression for outliers
(2) Penalise $\boldsymbol{\beta}^{\text {treat }}$ (Ridge regression)
© Empirical Bayes variance estimation

Fit MSqRob mixed model in two-stage approach

MSqRob

- No protein summaries available
- Difficult to disseminate
- Unclear to calculate degrees of freedom to adopt t-tests for inference in experiments with small sample sizes
\rightarrow Modular approach
(1) Summarize peptides to proteins using robust regression
(2) Robust penalized regression of protein level summaries

Summarisation with peptide based model

Summarisation with peptide based model

Protein by protein analysis of peptide data with linear model peptide level

$$
y_{s p}=\epsilon_{s p} \quad+\quad \beta_{s}^{\text {sample }}
$$

Summarisation with peptide based model

Protein by protein analysis of peptide data with linear model
peptide level

$$
y_{s p}=\beta_{p}^{\text {pep }}+\epsilon_{s p}+
$$

protein level
$\beta_{s}^{\text {sample }}$

Summarisation with peptide based model

Protein by protein analysis of peptide data with linear model
peptide level

$$
y_{s p}=\beta_{p}^{\text {pep }}+\epsilon_{s p}+
$$

protein level
$\beta_{s}^{\text {sample }}$

Summarisation with peptide based model

Protein by protein analysis of peptide data with linear model

Robust estimation using observation weights

- Outlying peptide intensities: incorrect peptide identification, post-translational modifications, ...

Least Squares Loss Function

Robust estimation using observation weights

- Outlying peptide intensities: incorrect peptide identification, post-translational modifications, ...

Huber Loss Function

Robust estimation using observation weights

- Outlying peptide intensities: incorrect peptide identification, post-translational modifications, ...

Huber Weights

- Iteratively fit model with observation weights $w\left(\epsilon_{i p}\right)$

$$
\operatorname{argmin}_{\beta_{1 \ldots p}^{\text {pep }}, p_{1 \ldots n}^{\text {samp }}}\left[\sum_{i=1}^{n} \sum_{p}^{P} w\left(\epsilon_{i p}\right)\left(y_{i p}-\beta_{p}^{\text {pep }}-\beta_{i}^{\text {samp }}\right)^{2}\right]
$$

Robust estimation using observation weights

- Outlying peptide intensities: incorrect peptide identification, post-translational modifications, ...

- Iteratively fit model with observation weights $w\left(\epsilon_{i p}\right)$

$$
\operatorname{argmin}_{\beta_{1 \ldots p}^{\text {pep }}, \beta_{1 \ldots n}^{\text {samp }}}\left[\sum_{i=1}^{n} \sum_{p}^{P} w\left(\epsilon_{i p}\right)\left(y_{i p}-\beta_{p}^{\text {pep }}-\beta_{i}^{\text {samp }}\right)^{2}\right]
$$

Robust estimation using observation weights

- Outlying peptide intensities: incorrect peptide identification, post-translational modifications, ...

- Iteratively fit model with observation weights $w\left(\epsilon_{i p}\right)$

$$
\operatorname{argmin}_{\beta_{1 \ldots p}^{\text {pep }}, \beta_{1 \ldots n}^{\text {samp }}}\left[\sum_{i=1}^{n} \sum_{p}^{P} w\left(\epsilon_{i p}\right)\left(y_{i p}-\beta_{p}^{\text {pep }}-\beta_{i}^{\text {samp }}\right)^{2}\right]
$$

Assess effect of robust summarization

Alter cptacAvsB_lab3_median.Rmd file to use robust summarization:
\rightarrow use method=" robust" in combineFeatures

Inference upon summarisation: Protein level model

$$
y_{r}=\beta_{g(r)}^{g r o u p}+\epsilon_{r}
$$

- y_{r} : protein summary of run r
- $\sum_{g=1}^{G} \beta_{g}^{\text {group }}=0$

Inference upon summarisation: Protein level model

$$
\begin{aligned}
y_{r} & =\beta_{g(r)}^{\text {group }}+\epsilon_{r} \\
& =\mathbf{X}_{r}^{t} \boldsymbol{\beta}+\epsilon_{r}
\end{aligned}
$$

- y_{r} : protein summary of run r
- $\sum_{g=1}^{G} \beta_{g}^{\text {group }}=0$
- $\boldsymbol{\beta}=\left[\beta_{1}^{\text {group }}, \ldots, \beta_{G}^{\text {group }}\right]^{t}$
- $\mathbf{X}_{r}^{t}=\left[\begin{array}{lll}\text { group }\end{array} x_{r 1}^{\text {group }}\right]$
- $x_{r g}^{\text {group }}=1$ if run r in group g $x_{r g}^{\text {group }}=0$ otherwise

Inference upon summarisation: Protein level model

$$
\begin{aligned}
y_{r} & =\beta_{g(r)}^{\text {group }}+\epsilon_{r} \\
& =\mathbf{X}_{r}^{t} \boldsymbol{\beta}+\epsilon_{r}
\end{aligned}
$$

- y_{r} : protein summary of run r
- $\sum_{g=1}^{G} \beta_{g}^{\text {group }}=0$
- $\boldsymbol{\beta}=\left[\beta_{1}^{\text {group }}, \ldots, \beta_{G}^{\text {group }}\right]^{t}$
- $\mathbf{X}_{r}^{t}=\left[\begin{array}{lll}\text { group } & \ldots x_{r G}^{\text {group }}\end{array}\right]$
- $x_{r g}^{\text {group }}=1$ if run r in group g $x_{r g}^{\text {group }}=0$ otherwise

MSqRobSum: robust M-estimation + ridge regression

Moderated Statistics

Problems with ordinary t-test

Ordinary t-test

Problems with ordinary t-test

Original t-test

A moderated t-test

A general class of moderated test statistics is given by

$$
T_{g}^{\text {mod }}=\frac{\bar{Y}_{g 1}-\bar{Y}_{\mathrm{g} 2}}{c\left(\tilde{S}_{g}\right)}
$$

where \tilde{S}_{g} is a moderated standard deviation estimate.

- empirical Bayes theory provides formal framework for borrowing strength across genes,
- Implemented in popular bioconductor package limma

$$
\tilde{S}_{g}=\sqrt{\frac{d_{g} S_{g}^{2}+d_{0} S_{0}^{2}}{d_{g}+d_{0}}}
$$

- S_{0}^{2} : common variance (over all proteins)
- Moderated t-statistic is t-distributed with $d_{0}+d_{g}$ degrees of freedom.
\rightarrow Note that the degrees of freedom increase by borrowing strength across genesl

Shrinkage of Standard Deviations

The data decides whether $\tilde{\mathbb{t}}_{g}$ should be closer to $t_{g, p o l e d}$ or to t_{g}

Shrinkage of the variance with limma

Problems with ordinary t-test solved by moderated EB t-test

Problems with ordinary t-test solved by moderated EB t-test

Breast cancer example

- Study on tamoxifen treated Estrogen Receptor (ER) positive breast cancer patients
- Proteomes for tumors of patients with good and poor outcome upon recurrence.
- Assess difference in power between 3vs3, 6vs6 and 9vs9 patients.

Experimental Design

Power?

$$
\begin{gathered}
\Delta=\bar{z}_{p 1}-\bar{z}_{p 2} \\
T_{g}=\frac{\Delta}{\text { se }_{\Delta}} \\
T_{g}=\frac{\widehat{\text { signal }}}{\sqrt{\text { Noise }}}
\end{gathered}
$$

If we can assume equal variance in both treatment groups:

$$
\operatorname{se}_{\Delta}=\operatorname{SD} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}
$$

\rightarrow Design: if number of bio-repeats increases we have a higher power!

Experimental Design: Blocking

Sources of variability

$$
\sigma^{2}=\sigma_{\text {bio }}^{2}+\sigma_{\text {lab }}^{2}+\sigma_{\text {extraction }}^{2}+\sigma_{\text {run }}^{2}+\ldots
$$

- Biological: fluctuations in protein level between mice, fluctations in protein level between cells, ...
- Technical: cage effect, lab effect, week effect, plasma extraction, MS-run, ...

Blocking Example: mouse T-cells

FIG. 1. Label-free quantitative analysis of conventional and regulatory T cell proteomes. General analytical workflow based on cell sorting by flow cytometry using the DEREG mouse model and parallel proteomic analysis of Tconv and Treg cell populations by nanoLCMS/MS and label-free relative quantification.

Blocking Example: mouse T-cells

Blocking

$$
\sigma^{2}=\sigma_{\text {within mouse }}^{2}+\sigma_{\text {between mouse }}^{2}
$$

\rightarrow All treatments of interest are present within block!
\rightarrow We can estimate the effect of the treatment within block!
\rightarrow We can isolate the between block variability from the analysis
\rightarrow linear model:

$$
y \sim \text { type }+ \text { mouse }
$$

\rightarrow use argument fixed $=\mathrm{c}($ " type" ," mouse" $)$ in fit.model

Power gain of blocking

- Completely randomized design (CRD): 8 mice, 4 conventional T-cells, 4 regulatory T-cells.
- Randomized complete block desigh (RBC): 4 mice, for each mouse conventional and regulatory T-cells.

Power gain of blocking
 CRD

$$
y \sim \text { type }
$$

CRD-design:
29 proteins significant

RCB
$y \sim$ type + mouse

RCB
$y \sim$ type

Anova table: P24452, Capg, Macrophage-capping protein

\#\#\# RCB design \#\#\#						
	Df	Sum Sq	Mean Sq	F value	$\operatorname{Pr}(>F)$	
type	1	15.2282	15.2282	3720.035	$9.71 \mathrm{e}-06$	$* * *$
mouse	3	0.2179	0.0726	17.747	$0.02058 *$	
Residuals	3	0.0123	0.0041			

\#\#\# RCB design: no mouse effect \#\#\#
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
type $\quad 1 \quad 15.2282 \quad 15.2282 \quad 396.87 \quad 1.038 \mathrm{e}-06$ ***
Residuals 60.23020 .0384
\#\#\# CRD design \#\#\#
Df Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
type $\quad 111.635011 .6350 \quad 122.86 \quad 3.211 \mathrm{e}-05$ ***
Residuals 60.56820 .0947

Anova table: P24452, Capg, Macrophage-capping protein

Comparison residual variance

RCB without mouse effect vs CRD

