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Challenges in Label Free MS-based Quatitative proteomics
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Introduction Challenges

Challenges in Label Free MS-based Quatitative proteomics
MS-based proteomics returns peptides:
pieces of proteins
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Introduction Challenges

Challenges in Label Free MS-based Quatitative proteomics

We need information on protein level!
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Introduction Spike-in

CPTAC Spike-in Study

Same trypsin-digested yeast
proteome background in each
sample

Trypsin-digested Sigma UPS1
standard: 48 different human
proteins spiked in at 5 different
concentrations (treatment A-E)

Samples repeatedly run on different
instruments in different labs

After MaxQuant search with match
between runs option

41% of all proteins are
quantified in all samples
6.6% of all peptides are
quantified in all samples

→ vast amount of missingness
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Introduction Overview Data Analysis

T-tests

Anova

Linear 
Model

Linear 
Models with 

peptide effects

Pre-processing Statistical
Analysis

Protein
level

Peptide
level

Summarization  
to protein level
mean median LFQ

median polish

Imputation
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Introduction Summarization issues

Summarization
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Introduction Summarization issues

Summarization

Strong peptide
effect

Unbalanced peptide
identification

Summarization bias

Different precision
of protein level
summaries
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Peptide based model

T-tests

Anova

Linear 
Model

Linear 
Models with 

peptide effects

Pre-processing Statistical
Analysis

Protein
level

Peptide
level

Summarization  
to protein level
mean median LFQ

median polish

Imputation
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Peptide based model

MSqRob workflow (Goeminne et al. 2016 MCP, PMID: 26566788)

ygrp = βgroupg + urun
r + βpep

p + εrp

protein-level

βgroup
g : spike-in

random run effect urun
r ∼ N

(
0, σ2

run

)
→ Addresses pseudo-replication

peptide-level

peptide specific effect βpep
p

within run error εrp ∼ N
(
0, σ2

ε

)

Estimation

1 Robust regression for outliers

2 Penalise βtreat (Ridge regression)

3 Empirical Bayes variance estimation
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Robust Summarization & Inference

Fit MSqRob mixed model in two-stage approach

MSqRob

No protein summaries available

Difficult to disseminate

Unclear to calculate degrees of freedom to adopt t-tests for
inference in experiments with small sample sizes

→ Modular approach

1 Summarize peptides to proteins using robust regression

2 Robust penalized regression of protein level summaries
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Robust Summarization & Inference Robust summarisation

Summarisation with peptide based model
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Robust Summarization & Inference Robust summarisation

Summarisation with peptide based model
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Summarisation with peptide based model
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Robust Summarization & Inference Robust summarisation

Summarisation with peptide based model
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Protein by protein analysis of peptide data with linear model

Estimation→ argminβpep
1...P ,β

samp
1...n

[
n∑

i=1

P∑
p

(
yip − βpep

p − βsamp
i

)2

]
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Robust Summarization & Inference Robust summarisation

Robust estimation using observation weights

Outlying peptide intensities: incorrect peptide identification,
post-translational modifications, ...
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Iteratively fit model with observation weights w(εip)

argminβpep
1...P ,β

samp
1...n

[
n∑

i=1

P∑
p

w(εip)
(
yip − βpep

p − βsamp
i

)2

]
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Robust Summarization & Inference Robust summarisation
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Robust Summarization & Inference Robust summarisation

Robust estimation using observation weights

Outlying peptide intensities: incorrect peptide identification,
post-translational modifications, ...
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Iteratively fit model with observation weights w(εip)
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Robust Summarization & Inference Robust summarisation

Robust estimation using observation weights

Outlying peptide intensities: incorrect peptide identification,
post-translational modifications, ...
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p − βsamp
i

)2

]
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Robust Summarization & Inference Robust summarisation

Assess effect of robust summarization

Alter cptacAvsB lab3 median.Rmd file to use robust
summarization:
→ use method=”robust” in combineFeatures
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Robust Summarization & Inference Robust Inference

Inference upon summarisation: Protein level model

yr = βgroupg(r) + εr

yr : protein summary of run r

∑G
g=1 β

group
g = 0

β = [βgroup1 , . . . , βgroupG ]t

Xt
r = [ xgroupr1 . . . xgrouprG ]

xgrouprg = 1 if run r in group g
xgrouprg = 0 otherwise

a b c d

20
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25

Human protein

Condition
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n 

(lo
g2
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●

MSqRobSum: robust M-estimation + ridge regression

statOmics, Ghent University lieven.clement@ugent.be 15/33



Robust Summarization & Inference Robust Inference

Inference upon summarisation: Protein level model

yr = βgroupg(r) + εr

= Xt
rβ + εr

yr : protein summary of run r

∑G
g=1 β

group
g = 0

β = [βgroup1 , . . . , βgroupG ]t

Xt
r = [ xgroupr1 . . . xgrouprG ]

xgrouprg = 1 if run r in group g
xgrouprg = 0 otherwise

a b c d

20
21

22
23

24
25

Human protein

Condition

E
xp

re
ss

io
n 

(lo
g2

)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

MSqRobSum: robust M-estimation + ridge regression

statOmics, Ghent University lieven.clement@ugent.be 15/33



Robust Summarization & Inference Robust Inference

Inference upon summarisation: Protein level model

yr = βgroupg(r) + εr

= Xt
rβ + εr

yr : protein summary of run r

∑G
g=1 β

group
g = 0

β = [βgroup1 , . . . , βgroupG ]t

Xt
r = [ xgroupr1 . . . xgrouprG ]

xgrouprg = 1 if run r in group g
xgrouprg = 0 otherwise

a b c d

20
21

22
23

24
25

Human protein

Condition

E
xp

re
ss

io
n 

(lo
g2

)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

MSqRobSum
Linear model

MSqRobSum: robust M-estimation + ridge regression

statOmics, Ghent University lieven.clement@ugent.be 15/33



Moderated statistics

Moderated Statistics
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Moderated statistics

Problems with ordinary t-test
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Moderated statistics

Problems with ordinary t-test
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Moderated statistics

A moderated t-test
A general class of moderated test statistics is given by

Tmod
g =

Ȳg1 − Ȳg2

c
(
S̃g
) ,

where S̃g is a moderated standard deviation estimate.

empirical Bayes theory provides formal framework for borrowing
strength across genes,

Implemented in popular bioconductor package limma

S̃g =

√
dgS2

g + d0S2
0

dg + d0
,

S2
0 : common variance (over all proteins)

Moderated t-statistic is t-distributed with d0 + dg degrees of
freedom.

→ Note that the degrees of freedom increase by borrowing strength
across genes!
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Moderated statistics

10

Marginal DistributionsMarginal Distributions

The marginal distributions of the sample variances

and moderated t-statistics are mutually independent 

Degrees of freedom add!

Shrinkage of StandardShrinkage of Standard

DeviationsDeviations

The data decides whether

should be closer to tg,pooled  or to tg

Posterior OddsPosterior Odds

Posterior probability of differential expression for

any gene is

Reparametrization of Lönnstedt and Speed 2002

Monotonic function of for constant d

Slide courtesy to Rafael Irizarry
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Moderated statistics

Shrinkage of the variance with limma
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Moderated statistics

Problems with ordinary t-test solved by moderated EB
t-test
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Moderated statistics

Problems with ordinary t-test solved by moderated EB
t-test
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Moderated statistics
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Moderated statistics

Breast cancer example

Study on tamoxifen treated Estrogen Receptor (ER) positive
breast cancer patients

Proteomes for tumors of patients with good and poor
outcome upon recurrence.

Assess difference in power between 3vs3, 6vs6 and 9vs9
patients.
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Experimental Design

Experimental Design
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Experimental Design

Power?

6 8 10 12 14

0.
0

0.
1

0.
2

0.
3

0.
4

log EV

de
ns

ity

Signal

noise

noise

∆ = z̄p1 − z̄p2

Tg =
∆

se∆

Tg =
ŝignal

N̂oise

If we can assume equal
variance in both
treatment groups:

se∆ = SD

√
1

n1
+

1

n2

→ Design: if number of
bio-repeats increases we
have a higher power!
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Experimental Design Blocking

Experimental Design:
Blocking
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Experimental Design Blocking

Sources of variability

σ2 = σ2
bio + σ2

lab + σ2
extraction + σ2

run + . . .

Biological: fluctuations in protein level between mice,
fluctations in protein level between cells, ...

Technical: cage effect, lab effect, week effect, plasma
extraction, MS-run, ...
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Blocking Example: mouse T-cells
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Experimental Design Blocking

Blocking Example: mouse T-cells
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Experimental Design Blocking

Blocking

σ2 = σ2
within mouse + σ2

between mouse
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→ All treatments of interest are present within block!

→ We can estimate the effect of the treatment within block!

→ We can isolate the between block variability from the analysis

→ linear model:
y ∼ type + mouse

→ use argument fixed=c(”type”,”mouse”) in fit.model
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Experimental Design Blocking

Power gain of blocking

Completely randomized design (CRD): 8 mice, 4 conventional
T-cells, 4 regulatory T-cells.

Randomized complete block desigh (RBC): 4 mice, for each
mouse conventional and regulatory T-cells.
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Experimental Design Blocking

Power gain of blocking
CRD RCB RCB

y ∼ type y ∼ type + mouse y ∼ type
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Experimental Design Blocking

Anova table: P24452, Capg, Macrophage-capping protein
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### RCB design ###

Df Sum Sq Mean Sq F value Pr(>F)

type 1 15.2282 15.2282 3720.035 9.71e-06 ***

mouse 3 0.2179 0.0726 17.747 0.02058 *

Residuals 3 0.0123 0.0041

### RCB design: no mouse effect ###

Df Sum Sq Mean Sq F value Pr(>F)

type 1 15.2282 15.2282 396.87 1.038e-06 ***

Residuals 6 0.2302 0.0384

### CRD design ###

Df Sum Sq Mean Sq F value Pr(>F)

type 1 11.6350 11.6350 122.86 3.211e-05 ***

Residuals 6 0.5682 0.0947
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Experimental Design Blocking

Anova table: P24452, Capg, Macrophage-capping protein
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### RCB design ###

Estimate Std. Error t value Pr(>|t|)

(Intercept) 22.21485 0.05058 439.190 2.60e-08 ***

typereg 2.75937 0.04524 60.992 9.71e-06 ***

mouse2 0.30560 0.06398 4.776 0.0174 *

mouse3 -0.15193 0.06398 -2.375 0.0981 .

mouse4 0.07331 0.06398 1.146 0.3350

---

Residual standard error: 0.06398 on 3 degrees of freedom

### RCB design: no mouse effect ###

Estimate Std. Error t value Pr(>|t|)

(Intercept) 22.27160 0.09794 227.40 4.88e-13 ***

typereg 2.75937 0.13851 19.92 1.04e-06 ***

---

Residual standard error: 0.1959 on 6 degrees of freedom

### CRD design ###

Estimate Std. Error t value Pr(>|t|)

(Intercept) 23.3012 0.1557 149.65 6.00e-12 ***

typereg 2.4956 0.2251 11.08 3.21e-05 ***

---

Residual standard error: 0.3077 on 6 degrees of freedom
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Experimental Design Blocking

Comparison residual variance
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RCB without mouse effect vs CRD
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