Skip to contents

Based on an experiment name, this function will gather the required flowFrame from the CytoPipeline disk cache and display it using the user chosen 1D or 2D view.

Usage

plotSelectedFlowFrame(
  experimentName,
  whichQueue,
  sampleFile,
  flowFrameName,
  path,
  xChannelLabel,
  yChannelLabel,
  useAllCells,
  nDisplayCells,
  useFixedLinearRange,
  linearRange,
  transfoListName = " "
)

Arguments

experimentName

the experiment name (representing a pipeline run) from which to extract the flow frame

whichQueue

"pre-processing" or "scale transform"

sampleFile

in case 'whichQueue' is set to 'pre-processing, which sample file to look at. This can be a number or a character.

  • if whichQueue == "scale transform", the sampleFile is ignored

  • if NULL and whichQueue == "pre-processing", the sampleFile is defaulted to the first one belonging to the experiment

flowFrameName

the name of the object to fetch (as referenced in the pipeline workflow)

path

the root path to look for the CytoPipeline experiment cache

xChannelLabel

the label of the channel to be displayed on the x axis: the conventional syntax is : channelName + " - " + channelMarker

yChannelLabel

the label of the channel to be displayed on the y axis: the conventional syntax is : channelName + " - " + channelMarker

useAllCells

if TRUE, no subsampling will be done

nDisplayCells

if useAllCells == FALSE, the number of subsampled cells

useFixedLinearRange

if TRUE, all channels using a linear scale will use a fixed range set by linearRange

linearRange

set for all channels using a linear scale, if useFixedLinearRange == TRUE

transfoListName

if not set to " ", the transformation list (as an object name ending with "_obj", as referenced in the pipeline workflow) to be used for for display.

Value

a ggplot object

Examples


# run CytoPipeline object first

outputDir <- base::tempdir()


rawDataDir <-
    system.file("extdata", package = "CytoPipeline")
experimentName <- "OMIP021_PeacoQC"
sampleFiles <- 
    file.path(
        rawDataDir, 
        list.files(rawDataDir, pattern = "Donor"))
jsonDir <- system.file("extdata", package = "CytoPipeline")
jsonPath <- file.path(jsonDir, "pipelineParams.json")

pipL2 <- CytoPipeline(
    jsonPath,
    experimentName = experimentName,
    sampleFiles = sampleFiles)

suppressWarnings(execute(
    pipL2,
    rmCache = TRUE,
    path = outputDir))
#> #####################################################
#> ### running SCALE TRANSFORMATION processing steps ###
#> #####################################################
#> Proceeding with step 1 [flowframe_read] ...
#> Proceeding with step 2 [remove_margins] ...
#> Removing margins from file : Donor1.fcs
#> Removing margins from file : Donor2.fcs
#> Proceeding with step 3 [compensate] ...
#> Proceeding with step 4 [flowframe_aggregate] ...
#> Proceeding with step 5 [scale_transform_estimate] ...
#> #####################################################
#> ### NOW PRE-PROCESSING FILE /__w/_temp/Library/CytoPipeline/extdata/Donor1.fcs...
#> #####################################################
#> Proceeding with step 1 [flowframe_read] ...
#> Proceeding with step 2 [remove_margins] ...
#> Removing margins from file : Donor1.fcs
#> Proceeding with step 3 [compensate] ...
#> Proceeding with step 4 [remove_doublets] ...
#> Proceeding with step 5 [remove_debris] ...
#> Proceeding with step 6 [remove_dead_cells] ...
#> Proceeding with step 7 [perform_QC] ...
#> Applying PeacoQC method...
#> Starting quality control analysis for Donor1.fcs
#> Calculating peaks
#> MAD analysis removed 30.75% of the measurements
#> The algorithm removed 30.75% of the measurements
#> Proceeding with step 8 [transform] ...
#> #####################################################
#> ### NOW PRE-PROCESSING FILE /__w/_temp/Library/CytoPipeline/extdata/Donor2.fcs...
#> #####################################################
#> Proceeding with step 1 [flowframe_read] ...
#> Proceeding with step 2 [remove_margins] ...
#> Removing margins from file : Donor2.fcs
#> Proceeding with step 3 [compensate] ...
#> Proceeding with step 4 [remove_doublets] ...
#> Proceeding with step 5 [remove_debris] ...
#> Proceeding with step 6 [remove_dead_cells] ...
#> Proceeding with step 7 [perform_QC] ...
#> Applying PeacoQC method...
#> Starting quality control analysis for Donor2.fcs
#> Calculating peaks
#> MAD analysis removed 24.38% of the measurements
#> The algorithm removed 24.38% of the measurements
#> Proceeding with step 8 [transform] ...

plotSelectedFlowFrame(
    experimentName = experimentName,
    whichQueue = "pre-processing",
    sampleFile = 1,
    flowFrameName = "remove_debris_obj",
    path = outputDir,
    xChannelLabel = "FSC-A : NA",
    yChannelLabel = "SSC-A : NA",
    useAllCells = TRUE,
    nDisplayCells = 0,
    useFixedLinearRange = TRUE,
    linearRange = c(-100, 262144))
#> displaying flow frame plot...


plotSelectedFlowFrame(
    experimentName = experimentName,
    whichQueue = "pre-processing",
    sampleFile = 1,
    flowFrameName = "remove_debris_obj",
    path = outputDir,
    xChannelLabel = "FSC-A : NA",
    yChannelLabel = "SSC-A : NA",
    useAllCells = FALSE,
    nDisplayCells = 100,
    useFixedLinearRange = FALSE,
    linearRange = NULL)
#> displaying flow frame plot...


plotSelectedFlowFrame(
    experimentName = experimentName,
    whichQueue = "pre-processing",
    sampleFile = 1,
    flowFrameName = "remove_debris_obj",
    path = outputDir,
    xChannelLabel = "Comp-670/30Violet-A : BV785 - CD3",
    yChannelLabel = "Comp-780/60Red-A : APCCy7 - CD4",
    useAllCells = TRUE,
    nDisplayCells = 0,
    useFixedLinearRange = FALSE,
    linearRange = NULL,
    transfoListName = "scale_transform_estimate_obj")
#> displaying flow frame plot...