Skip to contents

this function triggers the execution of the processing queues of a CytoPipeline object. First, the scale tranform processing queue is run, taking the set of sample names as an implicit first input. At the end of the queue, a scale transform List is assumed to be created. Second, the flowFrame pre-processing queue, reapeatedly for each sample file. The scale transform list generated in the previous step is taken as implicit input, together with the initial sample file. At the end of the queue run, a pre-processed flowFrame is assumed to be generated. No change is made on the input CytoPipeline object, all results are stored in the cache.

Usage

execute(
  x,
  path = ".",
  rmCache = FALSE,
  useBiocParallel = FALSE,
  BPPARAM = BiocParallel::bpparam(),
  BPOPTIONS = BiocParallel::bpoptions(packages = c("flowCore")),
  saveLastStepFF = TRUE,
  saveFFSuffix = "_preprocessed",
  saveFFFormat = c("fcs", "csv"),
  saveFFCsvUseChannelMarker = TRUE,
  saveScaleTransforms = FALSE
)

Arguments

x

CytoPipeline object

path

base path, a subdirectory with name equal to the experiment will be created to store the output data, in particular the experiment cache

rmCache

if TRUE, starts by removing the already existing cache directory corresponding to the experiment

useBiocParallel

if TRUE, use BiocParallel for computation of the sample file pre-processing in parallel (one file per worker at a time). Note the BiocParallel function used is bplapply()

BPPARAM

if useBiocParallel is TRUE, sets the BPPARAM back-end to be used for the computation. If not provided, will use the top back-end on the BiocParallel::registered() stack.

BPOPTIONS

if useBiocParallel is TRUE, sets the BPOPTIONS to be passed to bplapply() function. Note that if you use a SnowParams back-end, you need to specify all the packages that need to be loaded for the different CytoProcessingStep to work properly (visibility of functions). As a minimum, the flowCore package needs to be loaded. (hence the default BPOPTIONS = bpoptions(packages = c("flowCore")) )

saveLastStepFF

if TRUE, save the final result of the pre-processing, for each file. By convention, these output files are stored in path/x@experimentName/output/, the file names used are the same as the initial fcs file basenames, concatenated with saveFFSuffix, and with file extension corresponding to saveFFFormat.

saveFFSuffix

FF file name suffix

saveFFFormat

either fcs or csv

saveFFCsvUseChannelMarker

if TRUE (default), converts the channels to the corresponding marker names (where the Marker is not NA). This setting is only applicable to export in csv format.

saveScaleTransforms

if TRUE (default FALSE), save on disk (in RDS format) the flowCore::transformList object obtained after running the scaleTransform processing queue. The file name is hardcoded to path/experimentName/RDS/scaleTransformList.rds

Value

nothing

Examples


### *** EXAMPLE 1: building CytoPipeline step by step *** ###

rawDataDir <-
    system.file("extdata", package = "CytoPipeline")
experimentName <- "OMIP021_PeacoQC"
sampleFiles <- file.path(rawDataDir, list.files(rawDataDir,
                                             pattern = "Donor"))
                                             
outputDir <- base::tempdir()

# main parameters : sample files and output files
pipelineParams <- list()
pipelineParams$experimentName <- experimentName
pipelineParams$sampleFiles <- sampleFiles
pipL <- CytoPipeline(pipelineParams)

### SCALE TRANSFORMATION STEPS ###

pipL <-
    addProcessingStep(pipL,
                      whichQueue = "scale transform",
                      CytoProcessingStep(
                          name = "flowframe_read",
                          FUN = "readSampleFiles",
                          ARGS = list(
                              whichSamples = "all",
                              truncate_max_range = FALSE,
                              min.limit = NULL
                          )
                      )
    )

pipL <-
    addProcessingStep(pipL,
                      whichQueue = "scale transform",
                      CytoProcessingStep(
                          name = "remove_margins",
                          FUN = "removeMarginsPeacoQC",
                          ARGS = list()
                     )
    )

pipL <-
    addProcessingStep(pipL,
                      whichQueue = "scale transform",
                      CytoProcessingStep(
                          name = "compensate",
                          FUN = "compensateFromMatrix",
                          ARGS = list(matrixSource = "fcs")
                      )
    )

pipL <-
    addProcessingStep(pipL,
                      whichQueue = "scale transform",
                      CytoProcessingStep(
                          name = "flowframe_aggregate",
                          FUN = "aggregateAndSample",
                          ARGS = list(
                              nTotalEvents = 10000,
                              seed = 0
                          )
                      )
    )

pipL <-
    addProcessingStep(pipL,
                      whichQueue = "scale transform",
                      CytoProcessingStep(
                          name = "scale_transform_estimate",
                          FUN = "estimateScaleTransforms",
                          ARGS = list(
                              fluoMethod = "estimateLogicle",
                              scatterMethod = "linear",
                              scatterRefMarker = "BV785 - CD3"
                          )
                      )
    )

### PRE-PROCESSING STEPS ###

pipL <-
    addProcessingStep(pipL,
                      whichQueue = "pre-processing",
                      CytoProcessingStep(
                          name = "flowframe_read",
                          FUN = "readSampleFiles",
                          ARGS = list(
                              truncate_max_range = FALSE,
                              min.limit = NULL
                          )
                      )
    )

pipL <-
    addProcessingStep(pipL,
                      whichQueue = "pre-processing",
                      CytoProcessingStep(
                          name = "remove_margins",
                          FUN = "removeMarginsPeacoQC",
                          ARGS = list()
                      )
    )

pipL <-
    addProcessingStep(pipL,
                      whichQueue = "pre-processing",
                      CytoProcessingStep(
                          name = "compensate",
                          FUN = "compensateFromMatrix",
                          ARGS = list(matrixSource = "fcs")
                      )
    )

pipL <-
addProcessingStep(
    pipL,
    whichQueue = "pre-processing",
    CytoProcessingStep(
        name = "remove_debris",
        FUN = "removeDebrisManualGate",
        ARGS = list(
            FSCChannel = "FSC-A",
            SSCChannel = "SSC-A",
            gateData =  c(73615, 110174, 213000, 201000, 126000,
                          47679, 260500, 260500, 113000, 35000)
                   )
   )
)

pipL <-
    addProcessingStep(pipL,
                      whichQueue = "pre-processing",
                      CytoProcessingStep(
                          name = "remove_dead_cells",
                          FUN = "removeDeadCellsManualGate",
                          ARGS = list(
                              FSCChannel = "FSC-A",
                              LDMarker = "L/D Aqua - Viability",
                              gateData = c(0, 0, 250000, 250000,
                                           0, 650, 650, 0)
                          )
                      )
    )

pipL <-
    addProcessingStep(
        pipL,
        whichQueue = "pre-processing",
        CytoProcessingStep(
            name = "perform_QC",
            FUN = "qualityControlPeacoQC",
            ARGS = list(
                preTransform = TRUE,
                min_cells = 150, # default
                max_bins = 500, # default
                step = 500, # default,
                MAD = 6, # default
                IT_limit = 0.55, # default
                force_IT = 150, # default
                peak_removal = 0.3333, # default
                min_nr_bins_peakdetection = 10 # default
            )
        )
    )

pipL <-
    addProcessingStep(pipL,
                      whichQueue = "pre-processing",
                      CytoProcessingStep(
                          name = "transform",
                          FUN = "applyScaleTransforms",
                          ARGS = list()
                      )
    )

# execute pipeline, remove cache if existing with the same experiment name
suppressWarnings(execute(pipL, rmCache = TRUE, path = outputDir))
#> #####################################################
#> ### running SCALE TRANSFORMATION processing steps ###
#> #####################################################
#> Proceeding with step 1 [flowframe_read] ...
#> Proceeding with step 2 [remove_margins] ...
#> Removing margins from file : Donor1.fcs
#> Removing margins from file : Donor2.fcs
#> Proceeding with step 3 [compensate] ...
#> Proceeding with step 4 [flowframe_aggregate] ...
#> Proceeding with step 5 [scale_transform_estimate] ...
#> #####################################################
#> ### NOW PRE-PROCESSING FILE /__w/_temp/Library/CytoPipeline/extdata/Donor1.fcs...
#> #####################################################
#> Proceeding with step 1 [flowframe_read] ...
#> Proceeding with step 2 [remove_margins] ...
#> Removing margins from file : Donor1.fcs
#> Proceeding with step 3 [compensate] ...
#> Proceeding with step 4 [remove_debris] ...
#> Proceeding with step 5 [remove_dead_cells] ...
#> Proceeding with step 6 [perform_QC] ...
#> Applying PeacoQC method...
#> Starting quality control analysis for Donor1.fcs
#> Calculating peaks
#> MAD analysis removed 16.54% of the measurements
#> The algorithm removed 16.54% of the measurements
#> Proceeding with step 7 [transform] ...
#> #####################################################
#> ### NOW PRE-PROCESSING FILE /__w/_temp/Library/CytoPipeline/extdata/Donor2.fcs...
#> #####################################################
#> Proceeding with step 1 [flowframe_read] ...
#> Proceeding with step 2 [remove_margins] ...
#> Removing margins from file : Donor2.fcs
#> Proceeding with step 3 [compensate] ...
#> Proceeding with step 4 [remove_debris] ...
#> Proceeding with step 5 [remove_dead_cells] ...
#> Proceeding with step 6 [perform_QC] ...
#> Applying PeacoQC method...
#> Starting quality control analysis for Donor2.fcs
#> Calculating peaks
#> MAD analysis removed 5.4% of the measurements
#> The algorithm removed 5.4% of the measurements
#> Proceeding with step 7 [transform] ...

# re-execute as is without removing cache => all results found in cache!
suppressWarnings(execute(pipL, rmCache = FALSE, path = outputDir))
#> #####################################################
#> ### running SCALE TRANSFORMATION processing steps ###
#> #####################################################
#> Proceeding with step 1 [flowframe_read]: found in cache!
#> Proceeding with step 2 [remove_margins]: found in cache!
#> Proceeding with step 3 [compensate]: found in cache!
#> Proceeding with step 4 [flowframe_aggregate]: found in cache!
#> Proceeding with step 5 [scale_transform_estimate]: found in cache!
#> #####################################################
#> ### NOW PRE-PROCESSING FILE /__w/_temp/Library/CytoPipeline/extdata/Donor1.fcs...
#> #####################################################
#> Proceeding with step 1 [flowframe_read]: found in cache!
#> Proceeding with step 2 [remove_margins]: found in cache!
#> Proceeding with step 3 [compensate]: found in cache!
#> Proceeding with step 4 [remove_debris]: found in cache!
#> Proceeding with step 5 [remove_dead_cells]: found in cache!
#> Proceeding with step 6 [perform_QC]: found in cache!
#> Proceeding with step 7 [transform]: found in cache!
#> #####################################################
#> ### NOW PRE-PROCESSING FILE /__w/_temp/Library/CytoPipeline/extdata/Donor2.fcs...
#> #####################################################
#> Proceeding with step 1 [flowframe_read]: found in cache!
#> Proceeding with step 2 [remove_margins]: found in cache!
#> Proceeding with step 3 [compensate]: found in cache!
#> Proceeding with step 4 [remove_debris]: found in cache!
#> Proceeding with step 5 [remove_dead_cells]: found in cache!
#> Proceeding with step 6 [perform_QC]: found in cache!
#> Proceeding with step 7 [transform]: found in cache!

### *** EXAMPLE 2: building CytoPipeline from JSON file *** ###

jsonDir <- system.file("extdata", package = "CytoPipeline")
jsonPath <- file.path(jsonDir, "pipelineParams.json")

pipL2 <- CytoPipeline(jsonPath, 
                      experimentName = experimentName,
                      sampleFiles = sampleFiles)

# note we temporarily set working directory into package root directory
# needed as json path mentions "./" path for sample files
suppressWarnings(execute(pipL2, rmCache = TRUE, path = outputDir))
#> #####################################################
#> ### running SCALE TRANSFORMATION processing steps ###
#> #####################################################
#> Proceeding with step 1 [flowframe_read] ...
#> Proceeding with step 2 [remove_margins] ...
#> Removing margins from file : Donor1.fcs
#> Removing margins from file : Donor2.fcs
#> Proceeding with step 3 [compensate] ...
#> Proceeding with step 4 [flowframe_aggregate] ...
#> Proceeding with step 5 [scale_transform_estimate] ...
#> #####################################################
#> ### NOW PRE-PROCESSING FILE /__w/_temp/Library/CytoPipeline/extdata/Donor1.fcs...
#> #####################################################
#> Proceeding with step 1 [flowframe_read] ...
#> Proceeding with step 2 [remove_margins] ...
#> Removing margins from file : Donor1.fcs
#> Proceeding with step 3 [compensate] ...
#> Proceeding with step 4 [remove_doublets] ...
#> Proceeding with step 5 [remove_debris] ...
#> Proceeding with step 6 [remove_dead_cells] ...
#> Proceeding with step 7 [perform_QC] ...
#> Applying PeacoQC method...
#> Starting quality control analysis for Donor1.fcs
#> Calculating peaks
#> MAD analysis removed 30.75% of the measurements
#> The algorithm removed 30.75% of the measurements
#> Proceeding with step 8 [transform] ...
#> #####################################################
#> ### NOW PRE-PROCESSING FILE /__w/_temp/Library/CytoPipeline/extdata/Donor2.fcs...
#> #####################################################
#> Proceeding with step 1 [flowframe_read] ...
#> Proceeding with step 2 [remove_margins] ...
#> Removing margins from file : Donor2.fcs
#> Proceeding with step 3 [compensate] ...
#> Proceeding with step 4 [remove_doublets] ...
#> Proceeding with step 5 [remove_debris] ...
#> Proceeding with step 6 [remove_dead_cells] ...
#> Proceeding with step 7 [perform_QC] ...
#> Applying PeacoQC method...
#> Starting quality control analysis for Donor2.fcs
#> Calculating peaks
#> MAD analysis removed 24.38% of the measurements
#> The algorithm removed 24.38% of the measurements
#> Proceeding with step 8 [transform] ...

### *** EXAMPLE 3: building CytoPipeline from cache (previously run) *** ###

experimentName <- "OMIP021_PeacoQC"
pipL3 <- buildCytoPipelineFromCache(
    experimentName = experimentName,
    path = outputDir)

suppressWarnings(execute(pipL3,
        rmCache = FALSE,
        path = outputDir))
#> #####################################################
#> ### running SCALE TRANSFORMATION processing steps ###
#> #####################################################
#> Proceeding with step 1 [flowframe_read]: found in cache!
#> Proceeding with step 2 [remove_margins]: found in cache!
#> Proceeding with step 3 [compensate]: found in cache!
#> Proceeding with step 4 [flowframe_aggregate]: found in cache!
#> Proceeding with step 5 [scale_transform_estimate]: found in cache!
#> #####################################################
#> ### NOW PRE-PROCESSING FILE Donor1.fcs...
#> #####################################################
#> Proceeding with step 1 [flowframe_read]: found in cache!
#> Proceeding with step 2 [remove_margins]: found in cache!
#> Proceeding with step 3 [compensate]: found in cache!
#> Proceeding with step 4 [remove_doublets]: found in cache!
#> Proceeding with step 5 [remove_debris]: found in cache!
#> Proceeding with step 6 [remove_dead_cells]: found in cache!
#> Proceeding with step 7 [perform_QC]: found in cache!
#> Proceeding with step 8 [transform]: found in cache!
#> #####################################################
#> ### NOW PRE-PROCESSING FILE Donor2.fcs...
#> #####################################################
#> Proceeding with step 1 [flowframe_read]: found in cache!
#> Proceeding with step 2 [remove_margins]: found in cache!
#> Proceeding with step 3 [compensate]: found in cache!
#> Proceeding with step 4 [remove_doublets]: found in cache!
#> Proceeding with step 5 [remove_debris]: found in cache!
#> Proceeding with step 6 [remove_dead_cells]: found in cache!
#> Proceeding with step 7 [perform_QC]: found in cache!
#> Proceeding with step 8 [transform]: found in cache!