this function is a wrapper around PeacoQC::PeacoQC() function. It also pre-selects the channels to be handled (=> all signal channels)
Usage
qualityControlPeacoQC(
ff,
preTransform = FALSE,
transList = NULL,
outputDiagnostic = FALSE,
outputDir = NULL,
...
)
Arguments
- ff
a flowCore::flowFrame
- preTransform
if TRUE, apply the transList scale transform prior to running the gating algorithm
- transList
applied in conjunction with preTransform
- outputDiagnostic
if TRUE, stores diagnostic files generated by PeacoQC in outputDir directory
- outputDir
used in conjunction with outputDiagnostic
- ...
additional parameters passed to PeacoQC::PeacoQC()
Examples
rawDataDir <-
system.file("extdata", package = "CytoPipeline")
sampleFiles <-
file.path(rawDataDir, list.files(rawDataDir, pattern = "Donor"))
truncateMaxRange <- FALSE
minLimit <- NULL
# create flowCore::flowSet with all samples of a dataset
fsRaw <- readSampleFiles(
sampleFiles = sampleFiles,
whichSamples = "all",
truncate_max_range = truncateMaxRange,
min.limit = minLimit)
suppressWarnings(ff_m <- removeMarginsPeacoQC(x = fsRaw[[2]]))
#> Removing margins from file : Donor2.fcs
ff_c <-
compensateFromMatrix(ff_m,
matrixSource = "fcs")
transList <-
estimateScaleTransforms(
ff = ff_c,
fluoMethod = "estimateLogicle",
scatterMethod = "linear",
scatterRefMarker = "BV785 - CD3")
ff_QualityControl <- suppressWarnings(
qualityControlPeacoQC(
ff_c,
preTransform = TRUE,
transList = transList,
min_cells = 150,
max_bins = 500,
MAD = 6,
IT_limit = 0.55,
force_IT = 150,
peak_removal = (1/3),
min_nr_bins_peakdetection = 10))
#> Applying PeacoQC method...
#> Starting quality control analysis for Donor2.fcs
#> Calculating peaks
#> MAD analysis removed 9.57% of the measurements
#> The algorithm removed 9.57% of the measurements