All functions

scpModelComponentMethods scpComponentAnalysis() scpComponentAggregate() scpComponentPlot() scpComponentBiplot()

Component analysis for single cell proteomics

scpKeepEffect() scpRemoveBatchEffect()

Correct single-cell proteomics data

scpDifferentialAnalysis() scpDifferentialAggregate() scpVolcanoPlot()

Differential abundance analysis for single-cell proteomics

scpVarianceAnalysis() scpVarianceAggregate() scpVariancePlot()

Analysis of variance for single-cell proteomics

scpModelWorkflow() scpModelFilterPlot()

Modelling single-cell proteomics data

scpModelFormula() scpModelInput() scpModelFilterThreshold() scpModelFilterNPRatio() scpModelResiduals() scpModelEffects() scpModelNames() `scpModelFilterThreshold<-`()

Class to store the results of single-cell proteomics modelling

ScpModelFit ScpModelFit-class class:ScpModelFit

Class to store the components of an estimated model for a feature

addReducedDims()

Add scplainer Component Analysis Results

aggregateFeaturesOverAssays()

Aggregate features over multiple assays

computeSCR()

Compute the sample over carrier ratio (SCR)

cumulativeSensitivityCurve() predictSensitivity()

Cumulative sensitivity curve

divideByReference()

Divide assay columns by a reference column

jaccardIndex()

Compute the pairwise Jaccard index

leduc_minimal

Minimally processed single-cell proteomics data set

medianCVperCell()

Compute the median coefficient of variation (CV) per cell

mqScpData

Example MaxQuant/SCoPE2 output

normalizeSCP()

Normalize single-cell proteomics (SCP) data

pep2qvalue()

Compute q-values

readSCP() readSCPfromDIANN() readSingleCellExperiment()

Read single-cell proteomics tabular data

reportMissingValues()

Four metrics to report missing values

sampleAnnotation

Single cell sample annotation

scp1

Single Cell QFeatures data

scpAnnotateResults()

Annotate single-cell proteomics analysis output